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Fall Detection in Homes of Older Adults Using
the Microsoft Kinect

Erik E. Stone, Member, IEEE, and Marjorie Skubic, Member, IEEE

Abstract—A method for detecting falls in the homes of older
adults using the Microsoft Kinect and a two-stage fall detection
system is presented. The first stage of the detection system charac-
terizes a person’s vertical state in individual depth image frames,
and then segments on ground events from the vertical state time
series obtained by tracking the person over time. The second stage
uses an ensemble of decision trees to compute a confidence that
a fall preceded on a ground event. Evaluation was conducted in
the actual homes of older adults, using a combined nine years of
continuous data collected in 13 apartments. The dataset includes
454 falls, 445 falls performed by trained stunt actors and nine nat-
urally occurring resident falls. The extensive data collection allows
for characterization of system performance under real-world con-
ditions to a degree that has not been shown in other studies. Cross
validation results are included for standing, sitting, and lying down
positions, near (within 4 m) versus far fall locations, and occluded
versus not occluded fallers. The method is compared against five
state-of-the-art fall detection algorithms and significantly better
results are achieved.

Index Terms—Fall detection, kinect, older adults.

I. INTRODUCTION

ALLS are a major issue among older adults. It is estimated
F that one out of every three older adults (those age 65 and
over) falls each year [1]. Of those who fall, many suffer serious
injuries, such as hip fractures and head traumas, which reduce
their mobility and independence, and lead to an increased risk
of early death [1]. The direct medical cost of falls among older
adults in the U.S. in the year 2000 was more than $19 billion [2].
This cost does not account for the decreased quality of life and
other long term effects experienced by many after suffering a
fall. Studies have also found an increased risk of physical and
physiological complications associated with prolonged periods
of lying on the floor following a fall, due to an inability to get
up [3]. Older adults living alone are at great risk of delayed
assistance following a fall. A low-cost, unobtrusive system ca-
pable of automatically detecting falls in the homes of older
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adults could help significantly reduce the incidence of delayed
assistance after a fall.

Many methods have been investigated or commercially devel-
oped for reporting or detecting falls among older adults. These
include wearable devices that allow an individual to manually
push a button in the event of fall, and wearable devices that
automatically detect a fall using sensors such as accelerome-
ters [4]-[7]. However, wearable devices must be continuously
worn, require batteries to be recharged, and may simply be for-
gotten by the user. In the case of devices requiring action on the
part of the wearer, loss of consciousness following a fall would
prevent use. Studies have also indicated older adults’ preference
for nonwearable sensors [8].

A number of researchers have looked at the use of environ-
mentally mounted sensors for fall detection, such as floor vi-
bration sensors [9], [10], passive infrared sensors [11], acoustic
sensors [10], [12], and video-based sensors, including tradi-
tional cameras [13]-[18] and depth imaging sensors [19]-[23].
Studies have found that privacy concerns of older adults to
vision-based monitoring systems may be addressed by the use
of appropriate privacy preserving processing techniques, such
as silhouettes [24].

This paper presents an unobtrusive method for detecting falls
in the homes of older adults using an environmentally mounted
depth imaging sensor, namely the Microsoft Kinect. A two-
stage system is used to detect falls. Initially, 3-D foreground
objects are segmented from each depth image frame using a
dynamic background subtraction algorithm. The first stage of
the system characterizes the vertical state of a 3-D object for an
individual frame, and then segments on ground events from the
vertical state time series. The second stage utilizes an ensemble
of decision trees and a set of features extracted from an on
ground event to generate a confidence that a fall preceded it.

For the purposes of training and evaluation, data were col-
lected (as part of an IRB approved study) in 13 apartments with
a total of 16 residents over the course of 1 year. The dataset, con-
sisting of approximately 3 339 days of continuous data, contains
454 falls, including 445 falls performed by trained stunt actors,
and nine naturally occurring resident falls. The extensive data
collection allows for characterization of system performance
under real-world conditions to a degree that has not been shown
in other published studies.

The remainder of this paper is organized as follows. First, a
discussion of similar work is presented. Second, a brief overview
of the Kinect-based system installed in the homes of older adults
is given. Third, our methodology for detecting falls using the
depth data from the Kinect is described. Fourth, results are pre-
sented and compared against those of an earlier system reported
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in the literature. Finally, there is a discussion of key points,
limitations, and future work.

II. RELATED WORK

Much work has been done investigating the use of standard
imaging sensors for fall detection. Approaches have ranged
from single cameras mounted on the wall [13], [14], to cam-
eras mounted on the ceiling [15], [16], to multiple cameras
placed around a room to allow 3-D reconstruction of foreground
objects [17], [18]. Single camera systems typically rely on im-
age space features extracted from silhouettes, such as bounding
box ratios. Multicamera systems instead extract features such
as velocity from 3-D objects constructed from back projecting
multiple silhouettes. However, traditional camera-based systems
suffer from a number of limitations.

First, foreground extraction generally relies on background
modeling in color image space, which is difficult in real-world
conditions due to issues such as lighting changes and shadows
[25]. Second, operation in low light or no light conditions is
only possible if an active source of infrared (IR) light is installed
along with the cameras. However, color information is no longer
available under only IR illumination, posing another issue for
background modeling [26]. Third, in the case of single camera
systems, it is difficult to extract features that accurately capture
the 3-D movement of objects necessary to robustly characterize
falls [14], [23]. Fourth, in the case of multicamera systems,
installation and calibration of the cameras in the same reference
frame becomes a major concern, along with cost as the system
complexity rises. Due to these issues, among others, researchers
have looked at using the recently released Microsoft Kinect
depth imaging sensor to detect falls. The Kinect uses a pattern
of actively emitted IR light to create a depth image, where the
value of a pixel is dependent on the distance to what it is viewing.

In [19], the authors present a method for fall detection using
a Kinect and a wearable device. The OpenNI framework [27]
is used to obtain the center of gravity of an individual from
the Kinect. The CoG is then used as input for fall detection,
along with acceleration and angular velocity from the wearable
device. All falls performed by three volunteers were correctly
detected by the system, and no false alarms were triggered when
using both the Kinect and the wearable device.

A Kinect placed 30 cm above the floor is used to detect falls
in [20]. A manual presegmentation is used to initially identify
areas where a fall could occur, and spatial characteristics of
segmented objects are then used to identify when a person is
lying on the floor. Out of 55 falls collected in a laboratory setting,
93% were classified correctly.

A method for the detection of walking falls using the Kinect is
presented in [21]. The width, height, and depth of a 3-D bound-
ing box of a person, obtained using the OpenNI framework,
along with the first derivatives, are used for fall detection. The
algorithm was evaluated on a set of 48 falls and 112 nonfalls
collected in a laboratory setting. All falls were detected with no
false alarms.

In [22], the authors present a method for fall detection using
the centroid height, and, in the event of occlusion, body ve-

locity of objects obtained from the Kinect depth data using a
background subtraction algorithm. The method was evaluated
on approximately 15 min of data containing 25 falls and 54
nonfalls collected in a laboratory setting. Only one fall was not
detected and no false alarms were reported.

Finally, researchers describe a method for fall detection uti-
lizing the skeletal model from the Kinect SDK in [23]. The
major orientation of an individual’s body, along with the height
of their spine, is computed and used as input for fall detection.
The method was evaluated on a set of 40 falls and 32 nonfalls
collected in a laboratory setting. Before the removal of tracking
errors, 37 falls were detected with five false alarms. A similar
approach, reported in [28], first uses fuzzy logic to generate on
ground, in between, and upright state confidences from the body
orientation and spine height features. The confidences are then
thresholded for fall detection. This method was evaluated on a
set of 40 falls and 32 nonfalls collected in a laboratory setting.
Accuracy of 98.6% was reported with one false alarm.

Although the results are encouraging, the major limitation
of these previous studies is a lack of evaluation in real-world
settings. Given that these systems were evaluated on an hour or
less of total data, collected in a laboratory setting, it is impossi-
ble to know how they will perform in the intended setting of an
older adult’s home. Generally, systems evaluated on controlled
laboratory data perform poorly in complex, real-world environ-
ments, as the wide range of difficulties such environments pose
make it nearly impossible to collect a realistic set of data in a
laboratory setting. These issues are further illustrated in Sec-
tion VI, where the method proposed here is compared against
those in [17], [21]-[23], and [28], on the extensive real-world
dataset collected in this paper.

III. SYSTEM OVERVIEW

A Kinect sensor and a computer were deployed in the homes
of elderly residents at an independent living facility as part of
an IRB approved human subjects study. Fig. 1 shows the Kinect
sensor installed in one apartment. The Kinect is placed on a
small shelf a few inches below the ceiling (height 2.75 m),
above the front door. The computer is placed in a cabinet above
the refrigerator. This arrangement has proven to be unobtrusive
to the residents, with most indicating that they do not notice the
equipment after a short period of time.

The Microsoft Kinect SDK and the skeletal tracking it pro-
vides are not used. Instead, the raw values from the Kinect depth
stream (obtained using the open source libfreenect library [29])
are processed directly. The main reason for not using the Kinect
SDK is the limited range of the skeletal tracking, approximately
1.5 to 4 m from the Kinect. This range is insufficient to capture
falls in many areas of the apartments. Given that residents may
be in any position or orientation prior to a fall, it is also likely
that the Kinect SDK may fail to acquire a skeletal model in some
cases, or be unreliable during the fall motion [21].

A dynamic background subtraction algorithm is used to iden-
tify foreground pixels from the depth imagery of the Kinect. The
algorithm is based on the well-known mixture of distributions
approach in [30]; however, each distribution is a simple range.
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Fig. 1. Top: Kinect sensor and computer (inside cabinet) as installed in apart-

ments. Middle: Example depth images and extracted foreground from an apart-
ment. Bottom: Three-dimensional object formed using extracted foreground.

Each pixel is modeled using three background distributions, and
three foreground distributions, and the background distributions
are initialized using a set of training frames (10 s). Given a new
pixel value, any distribution to which the new value matches has
its range updated and weight increased; nonmatched distribu-
tions have their weight decayed (and become inactive when their
weight reaches zero). If the new value does not match any active
distribution, the foreground distribution with the least weight (or
inactive) is reinitialized based on this value. After updating, any
foreground distribution whose weight has reached a predefined
threshold replaces the least weight (or inactive) background dis-
tribution. The parameter settings are such that a stationary object
placed in the scene will be updated into the background after
approximately 5 min, and background distributions will become
inactive if not matched for 20 min. Due to the depth imagery
using an actively emitted pattern of infrared light, many of the
problems, such as lighting and shadows, associated with back-
ground modeling in color imagery are avoided (although other
issues arise, such as overpowering sunlight).

After postprocessing (filtering, dilation, hole filling, and ero-
sion), foreground pixels are projected into 3-D with respect to

the Kinect, and then translated into a world-based coordinate
system using an automated estimate of the floor plane that is
updated in real time. Next, segmentation of foreground objects
is performed by projecting each point onto discretized (1 in?)
X/Y (floor) and X/Z (vertical) planes and using single-linkage
clustering to group points on each plane. Points that are grouped
together on both planes are combined to form a 3-D object. A
basic tracking algorithm is used to track objects, of at least a
minimum size, across frames. At each frame, the location and
trajectory of the currently tracked objects is used to assign them
(greedily) to objects segmented from the current frame. The
distance between the predicted centroid location of a currently
tracked object and an object in the current frame must be below
a threshold (60 cm) for an assignment to be made. Objects in the
current frame which do not match to a tracked object are added
as tracked objects themselves. Tracked objects are removed after
20 s without being matched.

IV. FALL DETECTION METHODOLOGY

A two-stage system is used for fall detection. The first stage
of the system characterizes the vertical state of a segmented
3-D object for individual frames, and then identifies on ground
events through temporal segmentation of the vertical state time
series of tracked 3-D objects. The second stage of the system
utilizes an ensemble of decision trees and features extracted
from an on ground event to compute a confidence that a fall
preceded it.

A. First Stage—Vertical State Characterization

Three features are used to robustly characterize the vertical
state of a 3-D object for an individual frame: the maximum
height of the object Z,,.«, the height of the object’s centroid
Zecent» and the number of elements of the discretized (1 inch
squares) X/Y (floor) plane to which only points from the object
with a height below 38 cm (15 in, three fourths typical knee
height) project Z,,. The following equation is used to obtain
the measure of vertical state V;:

Zmax
o (Zom
kpg

km ax

chnt

kcent

where ky,.x is set to 170 cm (estimated average height of all
adults in the USA [31]), kcent 18 set to 85 cm (half of k. ), and
k,4 is learned from training data as the average value of Z,,
following all falls in the training set. During evaluation, this
value ranged from 350 to 391 over 13 cross validation folds.

Thus, values in the ranges of 1.6 to 2.2, and 0.9 to 1.4, could
be expected when a person is standing, or sitting, respectively;
while a near zero, or less, could generally be expected when a
person is on the ground following a fall.

B. First Stage—On Ground Event Segmentation

Given vertical state estimates for a tracked 3-D object over
time, on ground events are identified through temporal seg-
mentation of the vertical state time series. Accurate segmenta-
tion of the fall motion is critical for robust feature extraction.
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Depending on the type of fall, the environment, and the individ-
ual, among other variables, the duration of the fall motion will
vary. Such variation can create problems if a fixed window size
is used for feature extraction.

After filtering, the vertical state time series using median and
average filters (with a window size covering half a second) to
yield the smoothed signal V, (i), ¢ = 1,..., N, the following
procedure is used to segment on ground events:

INPUT: V() i=1,...N

OUTPUT: E, list of on ground events (e.g., te, tinits tstares tend)
PARAMETERS:  Tie, frare

1:i=1

2:WHILEi< N

IF Vavg(i) < Tirig

tstart = tinit = i
WHILE fstart < N AND Vayg(tstart+1) < Vavg(tstart)-€
tstart = tstart + 1
END
9 trall = tstart
10: WHILE trar > max(1, tstart — 4*frate) AND Vavg(trai-1) > Vavg(tra)
11: tran = tran — 1
12: END
13: fend = tstart
14: WHILE teng < N AND Vavg(tend) < Trig

Q@ N oo o

15; fond = tong + 1
16: END
17:

18: Add on ground event (tran, tint, tstart, tend) to list E
19:

20: = tend + 1
21. ELSE

22: i=i+1
23: END

24: END

where fi,. is the frame rate, and T}, is a threshold learned from
training data as the value required to trigger on ground event
extraction (if possible) for all falls, plus 5%. During evaluation,
this value ranged from 0.876 to 0.903 over 13 cross validation
folds. To allow real-time response to fall events, if the end of an
on ground event toyq is not identified within 4 s of the start g4,
fall confidence is computed at that time, denoted %, q, before
tenq 1s identified. Thus, the time elapsed from t¢,; tO tgepq 1S at
most 8 s. The point ¢;,;;, which denotes when on ground event
extraction was triggered, is included for illustrative purposes.

Fig. 2 shows example sets of signals, with segmentation over-
laid, from one stunt actor standing fall, one stunt actor sitting
fall, and one naturally occurring resident fall. Finally, to address
the issue of objects blending into the floor in the depth imagery
from the Kinect (and thus no longer being tracked), if the time
elapsed from t4..¢ to the last time an object was tracked is less
than 4 s, the last observation is artificially repeated to meet this
condition. This allows falls to be detected at larger distances
from the Kinect, where the faller may not be distinguishable
from the floor in the depth imagery following the fall.

—_— Zmax (cm)
— Z__x0.25 (elements) EEETRERREIT Vavg
t!elll lirlihalalrl th;nd tend
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Fig. 2. Signals and event segmentation from stunt actor standing (top) and
sitting (middle) falls, as well as a naturally occurring resident fall (bottom).
Before the fall, the resident bent down to pick something up, and then fell
backward.

C. Second Stage—On Ground Event Features

Five features are extracted for each on ground event for the
purpose of computing a confidence that a fall preceded it. A
description of these features follows.

1) Minimum Vertical Velocity (MVV): Minimum vertical ve-
locity is computed as the minimum of V (the derivative of the
vertical state time series) from t¢,); to tgart. This feature char-
acterizes the downward vertical motion of falling to the ground.

2) Maximum Vertical Acceleration (MVA): Maximum verti-
cal acceleration is computed as the maximum of V" (the second
derivative of the vertical state time series) from the frame of
minimum velocity to ty.¢. This feature characterizes the ac-
tion of abruptly hitting the floor, stopping downward vertical
motion.

3) Mean V,y,: Mean V,,, is computed as the mean of V,,,
from fg4art tO tenq. A higher value is indicative of bad fore-
ground segmentation, or nonfall activities such as bending over
or kneeling.

4) Occlusion Adjusted Change in Z,,, (A,,): When objects
in the environment move, whatever the object was previously oc-
cluding may be identified as foreground depending on a variety
of factors that influence the background model.A,, measures
the change in Z,,;, from t¢,11 O ts¢ar(, accounting for the possible
impact of occlusion. The presence of occlusion is assessed for
each pixel, at each frame, using the change in measured depth.



294 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 1, JANUARY 2015

If the rate of change between the current and previous frame
exceeds 420 cm/s (selected as a value significantly faster than
a person would ever be moving in their home), it is assumed
that whatever the pixel is currently viewing was occluded by a
different, closer object in the prior frame.

Given this assessment of occlusion, the number of foreground
pixels belonging to a 3-D object that have a height (after projec-
tion to world 3-D) below 38 cm and were previously occluded
Pocelude Can be counted at each frame, along with the total num-
ber of pixels belonging to the object that have a height below
38 cm Pyround- The percentage of pground pixels appearing due
to occlusion from tg,); to tyay 1S approximated as

21ty Pocetnae(0) !
mMax; Pground (¢) — MiN; Peround (4) ’ .
2

Tocclude = 111N (

Finally, A,, is computed as
AP!I = (mlax ZP!I (Z) - miin ZP!} (Z)> (1 - rocclude) . (3)

A near zero value of A, implies there was no significant
change in Z,,, that was not a result of occlusion. A higher value
is indicative of an object moving from a more off the ground
position to a more on the ground position.

5) Minimum Frame-to-Frame Vertical Velocity (MFFVV):
Minimum frame-to-frame vertical velocity is an estimate of the
MVV from ¢, to tsay computed by mapping foreground pix-
els in a depth image frame, to foreground pixels in the previous
depth image frame, independent of the tracking algorithm. At
each frame, a pointwise matching is found (after projection to
3-D) between all the foreground pixels in the current frame and
all the foreground pixels in the prior frame such that the overall
change in 3-D position is minimized. A simple heuristic and ran-
dom assignment is used to initialize the matching. The matching
is then iteratively refined using a neighborhood guided search,
where neighborhood structure is obtained from image space. A
many-to-one mapping of current to previous foreground pixels
is allowed as needed. After refinement, the vertical movement
of a foreground object between the previous and current frame
is estimated as the median of the vertical movement of all the
pixels belonging to the object. MFFV'V is computed as the min-
imum of these frame-to-frame vertical velocity estimates for an
object from tg,1 tO tggart-

In the absence of tracking errors, MFFVV will likely not
be as accurate as MVV derived from the vertical state time
series. However, MVV will reflect any vertical motion inferred
by the tracking algorithm, whether that motion is correct, or the
result of a tracking error. MFFV'V, meanwhile, is computed from
vertical velocity estimates made at each frame independent of
the tracking algorithm. Thus, MFFVV will generally be more
robust when the scene contains multiple foreground objects (or
foreground segmentation errors) that are in close proximity.

D. Second Stage—Ensemble for Fall Confidence

A fall confidence is computed for each on ground event using
the five extracted features and an ensemble of decision trees.
Each tree is a binary tree in which the decisions are based on

a single, randomly selected, predictor (dimension). The tree is
built recursively, in a top-down fashion, with the optimization
criterion for selecting split cut points being the mean-squared
error (MSE) of predictions versus the training data. Leaf nodes
are recursively split until a node contains fewer than 10 obser-
vations, a split would create a child node with fewer than five
observations, or the MSE for the node’s predictions drops below
a threshold . After the tree is built, the predicted value of each
leaf node is the average target value of the training observations
assigned to the node.

Each decision tree is trained using a sample of the training
data. A large imbalance, roughly 1:400, of positive (fall) to
negative (nonfall) samples exists in the collected data (described
in Section V). Thus, each sample of the training data contains all
of the minority class examples (falls) and a randomly selected,
with replacement, undersampling of the majority class examples
(nonfalls). Additive Gaussian noise (zero mean with standard
deviation equal to 5% of that present in the training data positive
samples), or jitter, is added to each training sample to further
improve generalization. The output of the trees is combined by
averaging.

E. Ground Truth Matching

Matching of on ground events (with temporal segmentation
tealls tstart, tend  tena) to ground truth, a set of times, G =
{g1,...,gn}, for each known fall, is assessed by the condition

tan — € < gi <teng +¢ 4)

where € is 2 s. If true, for exactly one ground truth entry, then
the on ground event is said to match known fall ¢. The time of
each known fall was identified, based on review of the depth
imagery, as the time at which the faller was on the ground and
vertical movement due to the fall had ceased.

V. EVALUATION

Kinect systems were deployed in 13 apartments as part of
an ongoing IRB approved study. The apartments are located
in an independent living facility for older adults. Ages of the
16 residents ranged from 67 to 97. Nine were female and seven
were male. In total, 3 339 days of continuous data collected from
the apartments, containing 454 falls of varying types, were used
for analysis. In addition to the residents’ activity, that of all pets
and visitors, including cleaning and clinical staff, is present in
the data.

To keep the space required to store the data to a manageable
size, the depth imagery was stored at 7.5 frames per second,
with a resolution of 320 x 240 using a lossless video codec.
Following 20 s without motion, empty frames (encoded using
no data beyond the header information) were written to the video
stream until motion was again detected. Thus, when there was
no activity in view of the Kinect (such as when residents were
sleeping, out of the apartment, or seated relatively still) virtually
no disk space was used. Motion was detected by thresholding
the average pixel difference between consecutive frames (ex-
cluding pixels for which a depth measurement in both frames
was not available). When processing the data, empty frames
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Fig. 3. Top: Sample depth imagery from stunt actor falls performed in apart-
ments of older adults. Pixels identified as ground are shaded blue, while pixels
identified as foreground are shaded red. Black pixels indicate no depth value
was returned by the sensor. Bottom: Centroid location of faller (with respect to
Kinect) following the fall motion for the ground truth falls. Blue dots are falls
classified as near, while red pluses are falls classified as far. The classification
is based on the maximum distance of the faller over the entire fall motion, not
just the position of the faller following the fall motion.

were replaced by the last nonempty frame. In total, 80 939 h of
video, requiring 3.44 TB of disk space, was recorded and used
for evaluation.

Each month approximately four stunt actor falls [32] were
performed in each apartment resulting in a total of 445 stunt
actor falls. The stunt actor falls are categorized into three major
types: standing, sitting, and lying down. Within each major
type, additional variation is present. Standing falls comprise 14
subtypes, ranging from sudden loss of balance falls to tripping
falls. Sitting falls comprise five subtypes, and lying down falls
comprise two subtypes. In addition to falls, the stunt actors also
performed motions designed to trigger false alarms while in the
apartments, such as slowly lying down on the floor, stretching
on the floor, and bending over to pick up objects. Example
depth imagery of stunt actor standing, sitting, and lying down
falls, with ground plane estimate (blue) and extracted foreground
(red) overlaid, is shown in Fig. 3, along with a plot showing the
location of the collected falls with respect to the Kinect.

Nine naturally occurring resident falls, from four residents,
are also included in the captured data. These naturally occur-
ring falls were identified using two methods. First, incident
reports, filled out by clinical staff members after responding
to a fall, or after having a resident report a fall, were manu-
ally cross-checked with the Kinect depth imagery to see if the
falls occurred in view of the Kinect. Seven of the nine naturally
occurring falls were identified by this method. Second, after
initial testing, on ground events detected as false alarms when
operating at a false alarm rate of four false alarms per month
were manually examined. Two of the nine naturally occurring
falls was identified as a result of this examination. Despite best
efforts to track resident falls in the apartments, it is possible
that other naturally occurring falls exist in the data. Of the nine
naturally occurring falls, seven were standing falls, while two
were sitting falls.

Each fall was assigned one of four contexts, based on the dis-
tance of the faller from the Kinect sensor and whether significant
occlusion was present during the fall. A fall was considered to
be far from the sensor if the faller was beyond 4.0 m (the cur-
rent range of skeletal tracking in the Microsoft SDK) from the
Kinect at any time during the fall motion (from tg,); to tgenq)-
Otherwise, the fall was considered near to the sensor. Signifi-
cant occlusion was considered present if the faller could not be
tracked for the duration of the fall; generally due to either be-
ginning the fall out of view of the Kinect, or ending the fall out
of view of the Kinect. This could be the result of being outside
the field of view, or being occluded behind structures or furni-
ture in the environment. Partial occlusion of the faller, which
did not prevent tracking for more than a few frames, and fallers
blending into the floor or walls, were not considered significant
occlusion.

Of the seven naturally occurring standing falls, four were
classified as far from the Kinect, while three were classified as
near. None were significantly occluded. Of the two naturally
occurring sitting falls, one was classified as near, while one was
classified as far. Both suffered from significant occlusion. In the
first case, the resident fell from her chair behind a table. In the
second, the resident tipped over in his recliner behind a kitchen
counter.

Both resubstitution and cross validation were used to evaluate
the performance of the system. In the case of resubstitution, an
ensemble of 200 decision trees was both trained and tested on
data from all 13 apartments. In the case of cross validation,
the data from one apartment were removed, an ensemble of
200 decision trees was trained on the data from the remaining
apartments, and, finally, the resulting ensemble was evaluated on
the data from the left out apartment. This process was repeated
for all 13 apartments.

Fig. 4 shows cross validation and resubstitution results for
each of the three major fall types under each of the four contexts.
Each line represents the mean of 20 trials and error bars extend
from the minimum to the maximum result. The range for the
false alarm rate (z-axis) is set to a maximum of four false
alarms per month, approximately one per week. This range was
selected because higher false alarms rates would most likely
not be tolerated by users of the system, and/or lead to users
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Fig.4. Performance curves showing resubstitution and cross validation results

on standing, sitting, and lying down falls under each of four contexts. Lines
represent the mean of 20 trials, with vertical bars extending from the minimum
to the maximum result.

ignoring the alarms. In total, 175 667 on ground events were
segmented by the first stage of the system. After matching the
events to ground truth, 24 out of the 454 ground truth falls failed
to generate an on ground event. Eleven of those falls suffered
significant occlusion. Of the remaining 13, all were located far
from the Kinect, with eight being lying down falls. The system
can achieve (cross validation) 98%, 70%, and 71% detection
of standing, sitting, and lying down falls, respectively, while
incurring one false alarm per month, when the falls are near to
the sensor and not significantly occluded. The results at one false
alarm per month are essentially unchanged under resubstitution.

As shown in Fig. 4, significant occlusion of the faller greatly
reduces fall detection performance. Performance is also reduced,
to a lesser extent, when falls are far (greater than 4.0 m) from
the sensor, with detection rates at one false alarm per month
(cross validation) dropping to 79%, 58%, and 5%, for standing,
sitting, and lying down falls, respectively.

The three naturally occurring standing falls near to the Kinect
would have been detected with a maximum false alarm rate of
0.15 per month, over all 20 cross validation trials. Three of
the four naturally occurring standing falls far from the Kinect
would have been detected with a maximum false alarm rate of
4.6 per month, over all 20 cross validation trials. The remaining
naturally occurring standing fall, which occurred in front of a
window 5.5 m from the Kinect, went completely undetected
by the system, as sunlight prevented depth measurements from
being returned for a large majority of the pixels viewing the
resident. The two naturally occurring sitting falls, which both
suffered from significant occlusion, did trigger extraction of on
ground events. However, they would have only been detected as
falls if the system were operating at a false alarm rate in excess
of 100 per month.

To assess the relative strength of the on ground event features
for fall detection, an ensemble of 40 decision trees was trained
(under cross validation) on each individual feature. The top of
Fig. 5 shows performance curves for these ensembles on the near
and not occluded standing falls. MFFVV, mean V,,, and A,
are relatively stronger features, while MVV and MVA, com-
puted from the vertical state time series, are relatively weaker.
The performance achieved with the individual features is sig-
nificantly worse than that achieved using them in combination.

Finally, the parameter Ti,i, (which ranged from 0.876 to
0.903 during cross validation) was varied from —0.3 to 1.7 to
assess the impact on performance. Results on the near and not
occluded standing falls are shown at the bottom of Fig. 5. Al-
though the number of segmented on ground events varies sig-
nificantly (from 2 882 to 476 430), fall detection performance
is very similar for all values above —0.3. When T}, is set this
low, it causes a number of the falls to not be segmented.

VI. COMPARISON WITH STATE OF THE ART

A comparison with five state-of-the-art fall detection algo-
rithms recently reported in the literature [17], [21]-[23], [28]
was performed using the 165 near and not occluded standing
falls described in Section V. For the algorithms in [21]-[23],
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Fig. 5. Top: On ground event individual feature comparison. Performance
curves show cross validation results on near and not occluded standing falls.
Curves are the mean of ten trials, with bars extending from the minimum to
maximum result. Bottom. Impact of variation in parameter 7T, on performance
on near and not occluded standing falls. T%,;, was varied by over 100% from
the values learned during cross validation (0.876-0.903).

[28], all the positive samples were used to set the range for
a dense grid-based sampling of the parameter space. Parameter
combinations yielding the highest detection rate for a given false
alarm rate were retained to obtain maximal performance curves.
Additionally, a 2% hysteresis was added to all thresholds (in the
absence of any other instructions) to prevent rapid successive
detections when signals were near the threshold values, limiting
false alarms. Cross validation, as described in Section V, was
used to adjust the parameters of the system proposed in this
work. Results are shown in Fig. 6.

The algorithms, except for those in [23] and [28] which re-
quire skeletal joint data, were evaluated using both the output of
the segmentation and tracking method described in this paper
(see Section III), and the output of the open source OpenNI
framework [27] using the PrimeSense NITE Natural Interaction
Middleware [33] (both version 1.5). OpenNI, in combination
with the proprietary NITE middleware, is one of two major soft-
ware packages (along with the Kinect SDK) that provide user
segmentation, tracking, and skeletal joint locations from Kinect
depth data. The studies in [21] and [28] used this software for
segmentation and tracking. Although the depth data used for
the analysis were not captured with OpenNI, OpenNI provides
a mechanism for processing the data. However, no mechanism
currently exists to allow processing of the data with the Kinect
SDK.

—w— This paper
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Fig. 6. Comparison with five state-of-the-art algorithms on near and not oc-
cluded standing falls (see Section V). Legend entries refer to the reference
number of the publication in which the algorithm was reported. Top: Re-
sults using the segmentation and tracking system described in this paper (see
Section III). Bottom: Results using OpenNI system for segmentation and track-
ing. Algorithms [23] and [31] could only be evaluated using the OpenNI system.

The NITE middleware, like the Kinect SDK, is designed for
game play and gesture recognition purposes. Recommendations
suggest having the sensor positioned 1 to 2 m off the ground,
with users standing upright in front of the sensor at a distance of
1.5 to 4.0 m, in an open area. It is specifically stated that being
close to walls, objects, or other people are difficult situations
that can produce inaccuracies [33]. Thus, it was not designed for
continuous monitoring in a typical older adult’s home, where
residents and visitors are frequently near, in contact with, or
partially occluded by furniture and other objects. Furthermore,
it was not designed for use with a depth camera placed near the
ceiling. However, it has successfully been used for this purpose
in laboratory settings in other studies [28].

Recent versions of the NITE middleware (1.5 and above)
include automatic skeletal tracking initialization. They do not
require users to enter a calibration pose as was the case with
earlier versions. Initial testing with the depth data in this pa-
per found the automatic calibration procedure rarely completed
successfully, causing skeletal joint data to be unavailable a vast
majority of the time. To address this issue, a saved skeletal model
(of a 167 cm individual) was used to initialize skeletal tracking
for all users. Although this is not ideal, it allowed skeletal joint
data to be available a large majority of the time.
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Despite the 165 falls not suffering from significant occlusion
as defined in Section V, the OpenNI system loses track of the
faller in at least one frame during 46 of the falls, and loses
track of the faller completely while the faller is approaching and
on the ground during 30 of the falls. This is likely due to the
more sophisticated scene segmentation performed by the NITE
middleware. Ideally, this allows moved objects, such as chairs
and tables, to immediately be adapted into the background while
maintaining user tracking. However, when users enter poses
which the system is not familiar with, or are in close proximity
to other objects in the scene, they may be adapted into the
background.

The OpenNI system also suffers from other tracking issues
when analyzing the data. Chairs, tables, bookcases, parts of
walls, and pets are often identified as users after a person moves
through or interacts with the scene. In addition, for a number of
the falls when tracking is only lost for a few frames, the faller is
identified as a new user when tracking resumes. This causes the
fall motion to be split among identified users. Lastly, skeletal
joint data are only available when the faller is on the ground
for 113 of the 165 falls. Thus, the OpenNI system effectively
imposes a ceiling of between 68% and 82% on the detection
rate depending on what features are used by an algorithm, and
how it detects falls.

The algorithm in [22] uses centroid height to detect when a
person is on the ground, and, if occlusion (loss of silhouette)
is detected, body velocity prior to the occlusion. Initial testing
found the body velocity component of the algorithm, using the
threshold indicated in the paper (0.63 m/s), triggered a huge
number of false alarms when people walked out of the scene; on
the order of 20 per day. As such, the body velocity component
was disabled for this comparison. Using centroid height alone,
the algorithm still triggers a large number of false alarms at low
detection rates. False alarms are caused by a variety of everyday
occurrences, including pets moving on the floor, items dropped
or moved on the floor (such as blankets, pillows, bags, foot rest,
etc.), and residents and visitors lying or playing on the floor.

The algorithm in [23] uses spine height and a measure of
body orientation derived from skeletal joint data to detect when
a person is on the ground. This algorithm performs significantly
better than the algorithm in [22], but still suffers from a large
number of false alarms due to many of the same issues. It is also
limited by the fact that the required skeletal joint data are only
available when the faller is on the ground for 113 of the 165 falls.
It could not be evaluated using the segmentation and tracking
system described in this paper, given the need for skeletal joint
data.

The algorithm in [28] is similar to the algorithm in [23]. In
this version, spine height and body orientation are used as inputs
to a fuzzy logic system. The fuzzy logic system then generates
confidences of whether a person is in an upright, in between, or
on the ground state. Finally, on the ground and upright confi-
dences are thresholded to detect falls. The performance of this
algorithm is very similar to that of the algorithm in [23], in which
spine height and body orientation are thresholded directly. Here
again, as the algorithm requires skeletal joint data, it could not be

evaluated using the segmentation and tracking system described
in this paper.

The algorithm in [21] uses the rate of change of the height,
width, and depth of the 3-D bounding box of a person to detect
falls. It requires the height of the bounding box to be shrink-
ing faster than a threshold ¢, while a combined measure of
width and depth is expanding faster than a threshold ¢,y p,
for N consecutive frames to initiate fall detection. Detection is
then completed if the bounding box height velocity stays below
another threshold for 2 s, indicating inactivity. This algorithm
performs significantly better than the previous methods as it at-
tempts to detect the fall motion. Thus, many of the false alarms
detected by the previous algorithms are eliminated. However,
this method still suffers from many false alarms itself.

One example is a resident walking up to a counter that is
between the resident and the Kinect and grabbing an item on
the counter. Given the positioning of the Kinect, the resident is
initially not occluded as they start walking toward the counter.
However, as the resident approaches the counter, the resident’s
legs become occluded, causing the bounding box height to
shrink. Simultaneously, the resident extends their arms and
reaches out to grab the item on the counter, causing the com-
bined width and depth measure to expand. The resident then
remains at the counter, keeping the bounding box height steady,
which causes the fall detection to complete. Furthermore, due to
partial occlusion and segmentation issues, roughly 15% of the
falls do not obey the underlying assumption of the algorithm;
namely, that the combined width and depth measure will ex-
pand noticeably during the fall. The 3-D bounding box is also
sensitive to limb placement. If a person’s arms are extended at
the beginning of a fall, and are drawn in during the fall motion,
this can contribute to the combined width and depth measure
not exhibiting the expected behavior.

The algorithm in [17] is a two-stage fuzzy logic-based ap-
proach incorporating features such as centroid height, centroid
velocity, and Eigen-based height, along with domain knowledge
from nurses. It first identifies intervals when a person is thought
to be on the ground, and then uses the acceleration of the cen-
troid during a 10 s window prior to the on ground interval to
compute a confidence that an impact occurred. These features
are then used to compute a fall confidence. With the tracking
system described in this paper, the algorithm has comparable
performance to that in [21], and yields better results than the
algorithm in [22]. Performance of this algorithm is significantly
reduced using the OpenNI system. The main reason for this is
discussed later.

The major limitation of the algorithm in [17] is the impact
confidence measure used to characterize the fall motion. This
measure, which is the ratio of peak acceleration from each half
of the 10 s window preceding the interval, assesses whether there
is a relative spike in acceleration prior to the on ground interval.
The presence of a relative spike in acceleration is insufficient to
distinguish many nonfall motions from fall motions. It is also
susceptible to missed detections if an abrupt motion, such as
quickly standing up, takes place prior to the fall. The need for
acceleration information prior to the fall is also problematic if a
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Fig. 7.

Issues with OpenNI system, likely resulting from poor floor plane estimation. 7op: Section of floor is identified as the user (with shoulder, neck, torso,

and hip joints) after person exits the scene. Bottom: Same behavior in a different apartment. (White pixels indicate foreground segmented by the OpenNI system.

Green dots indicate skeletal joint locations with a confidence greater than 0.5.)

fall occurs immediately, or very soon after, a person enters the
scene.

The method proposed here does considerably better than the
other algorithms using the segmentation and tracking system
described in Section III. It also performs better than the other
algorithms using the OpenNI system, although performance is
worse than expected (even after accounting for the previously
mentioned issues with the OpenNI system) at false alarm rates
below 10 per month. This is largely due to poor floor plane
estimation. The OpenNI system frequently generates floor plane
estimates that are below or above the floor level by up to 12 cm
in some areas (or the entirety) of an apartment. This leads to
significant variability in the Z,, signal (within and between
apartments), and impacts the fall segmentation as well as 4 of
the 5 features used to compute fall confidence.

Inaccurate floor plane estimates are also likely the cause of
issues such as those shown in Fig. 7. In these cases, a section
of floor is identified as the user when a user exits the scene.
These cases, along with others caused by the inaccurate floor
plane estimation, lead to increased false alarms for the method
proposed here, and those in [17], [22], [23], and [28]. However,
as the 3-D bounding box typically does not expand in width and
depth when the height shrinks in these cases, and height from
the floor plane is not itself a feature, they have little impact on
the performance of the algorithm in [21].

VII. DISCUSSION

A method for fall detection in the homes of older adults using
the Microsoft Kinect was presented. An extensive data collec-
tion consisting of 9 years of continuous data from actual apart-
ments of older adults containing 445 falls performed by trained
stunt actors, along with nine naturally occurring resident falls,
allowed characterization of performance in real-world condi-
tions under four different contexts. The method was compared
against five state-of-the-art algorithms previously reported in
the literature and significantly better results were achieved.

The major issues faced when detecting falls at larger distances
from the Kinect include decreased resolution of the faller in the

depth image, which makes foreground segmentation more dif-
ficult, decreased precision of the pixel depth estimates, and an
increased likelihood of natural light overpowering the actively
emitted infrared pattern of the Kinect causing pixel depth esti-
mates not to be returned. A future version of the Kinect, with
an increased depth image resolution and accuracy, would likely
improve the detection of falls far from the sensor. However,
the issue of sunlight overpowering the actively emitted infrared
pattern would still be a major problem at increased distances.

Reduced performance on nonoccluded sitting and lying down
falls, as compared to nonoccluded standing falls, is due to a
number of factors. With regards to sitting falls, the major issue
is the presence of the chair used by the faller. Often, part of
or the entire chair will be identified as foreground as a result
the fall, and will become part of the segmented 3-D object
representing the person. Although the use of the Zpg signal
helps make the system robust to segmentation issues, this will, of
course, impact calculation of the features used for fall detection.
Additionally, when the chair is positioned between the faller and
the Kinect, the chair may occlude part of the faller (not enough to
be considered significant occlusion), which, again, will impact
calculation of the features used for fall detection.

With regards to lying down falls, the major issue is the sig-
nificantly reduced fall motion. All lying down falls were per-
formed from couches, with the faller’s height being approxi-
mately 75 cm at the beginning of the fall. Consequently, the fall
motion covers less than half the vertical distance of a standing
fall, and the peak downward velocity is significantly reduced.
This reduced motion, along with the faller possibly blending
into the couch, makes it more difficult to discriminate lying
down falls from nonfalls, especially at large distances from the
Kinect.

The majority of false alarms detected by the system at low
false alarm rates (less than 4 per month) represent significant
challenges. Examples include a maid dropping a large bag of
trash on the floor, visiting children dropping to the floor while
playing, certain pets jumping down from furniture, and visitors
(such as family and maintenance staff) sitting or lying down on
the floor quickly. Such actions do not generally trigger a false
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alarm, but if they occur in just the right manner they can appear
as a fall to the system. A more sophisticated tracking algorithm
could potentially deal with some of these false alarms. However,
ultimately, there is a need to determine whether a foreground
object actually is or is not a person, and in some cases, is or is
not an elderly person. Such a determination is quite challenging
given that individuals could be in any location, with any posture,
and never be facing the Kinect prior to falling.

Although processing of the data for this analysis was per-
formed offline, real-time operation is possible using low cost
hardware. Systems installed in independent living facilities are
currently running the fall detection algorithm in real time (10
frames per second) using computers equipped with a dual core
Intel Atom CPU (D2700). The computers are small in size,
similar to a standard paperback book, which allows for a small
footprint when installed in a home.

The major limitation of the described method is the need for
the fall to be in view of the sensor. Although a Kinect sensor in
each room of an apartment would likely detect most falls, given
the field of view of the device and the possibility of occlusion,
multiple sensors per room may be required to cover all areas.

Future work includes further improvement of the fall detec-
tion methodology, along with personalization of the fall de-
tection threshold used in a home based on the fall risk of the
resident(s). Such fall risk information can be computed auto-
matically, in real time, from walking sequences analyzed in the
home using the same Kinect system [34], [35].
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