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We describe a novel technique to combine motion data with scene information to capture activity character-

istics of older adults using a single Microsoft Kinect depth sensor. Specifically, we describe a method to learn

activities of daily living (ADLs) and instrumental ADLs (IADLs) in order to study the behavior patterns of older

adults to detect health changes. To learn the ADLs, we incorporate scene information to provide contextual

information to build our activity model. The strength of our algorithm lies in its generalizability to model

different ADLs while adding more information to the model as we instantiate ADLs from learned activity

states. We validate our results in a controlled environment and compare it with another widely accepted

classifier, the hidden Markov model (HMM) and its variations. We also test our system on depth data col-

lected in a dynamic unstructured environment at TigerPlace, an independent living facility for older adults.

An in-home activity monitoring system would benefit from our algorithm to alert healthcare providers of

significant temporal changes in ADL behavior patterns of frail older adults for fall risk, cognitive impairment,

and other health changes.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Activities of daily living (ADLs) are a set of activities that are re-

quired for self-care such as walking, eating, dressing, and bathing.

They are used to assess the functional capacity of older adults [11].

Instrumental ADLs (IADLs) are a subset of the functional tasks that

older adults perform to support their independent lifestyles [9]. Ex-

amples of IADLs are housekeeping, cleaning, cooking. These activities,

when measured over an extended period of time, can show deviations

in health for older adults. Zisberg et al. [5] developed a new instru-

ment called SOAR to evaluate routine patterns in the lives of older

adults. Subjects from four retirement communities reported detailed

information regarding ADLs like eating, meal preparation, watching

television, bathing, etc. The study indicated that any deviation in the

routine of frail older adults could correlate with a change in health

and provides the motivation behind the work described in this paper.

We describe the premise behind our study using the following case

study revolving around the IADL cleaning the table. Suppose a healthy
✩ This paper has been recommended for acceptance by Isabelle Bloch.
∗ Corresponding author.
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bic).
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lder adult living independently performs the IADL cleaning the table

nce every day at a certain time. However, due to some health related

eason, she is unable to do so several days in a row. Once detected,

his deviation from her normal routine could be a strong indicator

f a health change which could help enable early interventions. The

oal of this study is to build a model to learn these ADL or IADL pat-

erns which can then be used for detection, and the changes in daily

or weekly or monthly) behavior patterns can then be used to detect

arly health changes.

The contributions of this paper are the following. We present a

nique, vision-based method for recognizing components of ADLs

nd IADLs by combining their interaction with object surfaces with a

et of linguistic fuzzy rules with heuristic parameters to model their

ctivities. Specifically, in this paper we use the activities walk, sit, clean

bject, clutter object, move near object, rearrange object, and move ob-

ect to describe our approach. We use the IADLs make bed and eat to

escribe the importance of combining scene information with mov-

ng object features to detect complex activities that are difficult to

etect using only the foreground information or only the scene fea-

ures. These activities further reinforce the importance of ontologies

o provide context for each ADL or IADL that can provide the baseline

or activity detection and help eliminate false alarms using contextual

nformation. The results using our proposed algorithm are discussed

nd compared with another popular activity modeling algorithm, the
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idden Markov model (HMM) and its variation, the details of which

re provided in Section 8. We further test our method on data col-

ected in an apartment at TigerPlace, an independent living facility

or older adults. The data comprise depth information from an older

esident (age 88, without any ambulatory needs such as a walker)

s he goes through his daily routine in the apartment. We conclude

ith the discussion of the future steps for the ADL activity modeling

ramework. The next section reviews some of the related work in this

eld using vision and non-vision based sensors.

. Background

Studies described in [4,5] indicate the importance of longitudinal

nalysis of the daily routine of older adults to study anomalies or

eviations in their regular patterns in an automated, non-intrusive

anner. In order to detect these deviations, the activities need to be

ecognized and ordered in a methodical way for day-to-day behavior

omparison. One approach is based on ontological activity modeling.

his is described in more detail in the next section.

In related activity modeling work using sensor information and

robabilistic approaches, the researchers in [22,23] utilized motion

ensor data to learn context-aware rules using a Bayesian network

BN). The ADLs tested were personal hygiene, bathing, toilet transi-

ion, housekeeping, eating, leaving home, sleeping, and taking med-

cation on two residents; the resulting activity label accuracy was

pproximately 70%. In [34], the researchers also used BNs to learn

specific ADL, brushing teeth, using a combination of camera and

otion sensors.

In work using vison-based sensors, Pirsiavash and Ramanan [35]

sed a wearable camera to detect objects of interest to identify 18

ifferent ADLs using a combination of bag of words approach with

n object detection model. However, this technique relied strongly

n the ability of the algorithm to recognize different objects such as

ater faucet, oven, etc. Also, it is not realistic to expect older adults

o wear cameras while they go through their normal routine. In work

sing fuzzy logic, Brulin et al. [32] detected the simple activity states

f lying, squatting, sitting, and standing using a set of fuzzy rules.

hey also had a state called "undetermined" to identify unknown

ctivity states. Simple bounding box parameters from the silhouettes

btained from a single camera were used as input to the single layered,

ight ruled, fuzzy rule based system. Accuracy results range between

4% and 72% depending on the dataset. Their work, similar to the study

n [10] focused on detecting falls in an in-home environment and

ot on the ADLs performed by older adults in their normal routines.

n other works related to depth data, there are several studies to

etect different ADLs [31,33,36–38]. However, all of these studies

tilize both color and depth information to detect the ADLs. To our

nowledge, there has been no work on ADL detection using only depth

nformation from the Kinect sensors. We have chosen to restrict the

ata to depth images only due to privacy concerns. Prior research

as shown that seniors are willing to accept the use of silhouette

magery even though they consider continuous RGB video monitoring

o be a privacy invasion [39]. The techniques proposed here rely on

egmented 3D silhouettes for ADL recognition.

In a review paper, Lavee et al. [24] described the different meth-

ds of activity event detection with vision-based sensors using pixel-

ased, object-based, and logic-based approaches. For pixel-based ap-

roaches, they described techniques using color, texture, as well as

radient information. For object-based approaches, they described

eatures such as bounding box and speed of moving objects. For logic-

ased approaches, they described techniques that use rule-based ac-

ivity models. Our approach incorporates features from the moving

erson as well as from the scene using depth data to build a robust

ctivity model framework that can handle uncertainties of activities

eing performed in different ways. We illustrate this variance with

he following scenario. Consider two residents, A and B. The normal
outine for resident A having lunch is as follows: he goes to the re-

rigerator, gets some deli meat and cheese, makes a sandwich, and

hen sits at a dining table to eat his sandwich. The normal routine for

esident B having lunch is as follows: she opens a can of soup from

he cabinet, heats it on the stove and then eats in the living room.

s can be seen, there are variations in the same activity eating lunch

etween different individuals. A robust activity model needs to be

ble to handle these variations within the same activity and still be

ble to identify both instances.

Another common approach to activity modeling is the use of

MMs as an event modeling formalism. An HMM is a doubly stochas-

ic process, i.e. there is an underlying stochastic process that is not

bservable (hidden) but can only be observed through another set of

tochastic processes that produce the sequence of observed symbols

20]. Several studies, including [18,25,26], use HMMs to detect activi-

ies such as meal preparation, eating snacks, and washing dishes. We

ill use this method for comparison with our activity framework.

. Ontological framework

The idea for representing ADLs using an ontology is not new. In

6], Chen et al. proposed an ontological method to recognize ADLs

uch as housework, managing money, taking medicine, and using

he phone. Theoretical foundations were set up to fuse information

rom different sensors (contact sensors, motion sensors, tilt sensors

nd pressure sensors), and then build an ontology of ADLs. Data from

ll the sensors were aggregated to describe the ADL occurring at a

ertain time point. Experiments were conducted under laboratory

ettings and tested on a subset of the ADL activities including brush-

ng teeth, bathing, and watching television. An accuracy of 94% was

chieved on a small subset of three subjects. In another study, Latfi

t al. [7] described an ontological approach to describe the medical

istory of older adults in an assisted living facility using a system

alled Telehealth Smart Home system (TSH). In this framework, they

reated an ontology which comprised the person and his/her medical

istory. The person component contained the profile of the person,

nteractions with the staff, and other interactions on a social level.

he medical history comprised the individual’s deficiencies (physical,

ensory), diseases, and risk factors. In ontologies related to eldercare

echnologies, Rodríguez et al. [8] proposed a framework called CARe

o describe ADLs in a nursing home scenario. Similarly, the researchers

n [42] proposed a framework called ELDeR to support independent

ifestyles of older adults. In other ADL work, the study in [40] de-

cribed ADLs using specific examples such as nocturnal activities, and

he study in [41] gave an overview of ADL ontologies in the context

f smart home applications. However, none of these studies were

mplemented or tested in a real smart home environment, and only

heoretical foundations were mentioned.

We now describe our ontological framework for learning ADLs in

eneral. One unique aspect of our approach is that it looks at the

verall big picture of the ADL framework while still being able to han-

le incomplete information. Fig. 1 shows the ontological structure for

he activities. There are five categories: activities, location, objects,

ensors and time of day. The activities component can be atomic

r complex. The atomic activities such as upright, walking, sitting,

ending, and rising are the building blocks of complex activities. The

omplex activities comprise the ADLs and IADLs. The location param-

ter describes the locations inside the apartment which can provide

ontext to the activity taking place. For example, making the bed

s most likely to take place in the bedroom. The objects component

efers to the objects with which seniors interact to perform the ADLs

nd IADLs. The sensors component describes the sensors in our smart

ome system used to detect the behavior patterns of older adults

n their home setting. The final component, time of day, refers to the

ime when the activities take place. This is useful to learn the patterns

f the behavior trends of older adults on a daily basis. For our study,
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Fig. 1. Top: general ontological framework for activities. Bottom: example of the IADL making the bed.
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we have used the depth camera as the sensor, and used manually

labeled object surfaces as well as room information to identify spe-

cific IADLs. The components from the ontology described in Fig. 1

provide the critical contextual information to describe ADLs and

IADLs. For an automated ADL and IADL recognition system, there will

be a need to incorporate an object surface recognizer that can iden-

tify specific instances of the ADLs. However, we propose a method

to handle incomplete information that can be very useful in a dy-

namic environment where all the object surfaces may not be iden-

tified and models for all possible ADLs and IADLs are not created.

This technique is described in the next few sections and elaborated in

Section 10.
An example of an IADL "making the bed" is shown in Fig. 1 which

escribes some of its attributes. For example, it has an atomic action

ending, has an object bed, has a location bedroom, etc. Our frame-

ork differs from other ontological models in its ability to handle

ncertain events. Instantiation of different activities is a daunting

ask, especially when the same activity can be performed differently

y different individuals. By instantiation, we mean that we anno-

ate or explicitly identify a specific ADL or IADL such as "making the

ed". In this case, we utilize the underlying assumptions regarding

he activity; such as it occurs in the bedroom, the object surface is

he bed, and the conditions shown in Fig. 1. Our model can han-

le these uncertainties while still being able to provide information
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Fig. 2. Block diagram of the activity modeling system from depth video sequences using a fuzzy inference system.
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Fig. 3. Example of a depth image (original size 244 × 320 pixels) and its corresponding

foreground image. The blue area in the foreground image is the ground region and the

large orange object is the detected moving object (a person). The smaller orange object

is an object (a bowl) on the table placed by the person which is detected as foreground

since it was not a part of the learned background model. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of

this article.)
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hich can be used to detect behavior trends. The other difference

s that we have tested part of the ontology in an independent

iving senior housing and demonstrate the efficacy of our research.

ig. 2 gives the block diagram of our system. Only depth information

s used to get information of the moving foreground as well as to

btain scene information. The features extracted are then input to

he first level FIS which provides the first level activity state infor-

ation that corresponds with the atomic activity states described in

ur ontological framework. This information is then further coupled

ith automatically-extracted scene information and input to the sec-

nd level FIS, which then generates summaries of complex activity

tates. Finally, these summaries are further input to the third level FIS

o generate the final activity summaries. Level 1 corresponds to the

tomic level activity states, level 2 produces summaries incorporating

nteraction with the objects present in the scene, and level 3 produces

ADL and ADL summaries using the second level summaries for more

omplex activity recognition. Consider the following scenario. Sup-

ose a person is detected sitting at the table. If we add another layer

o the activity states, we can see what happened prior to the event.

f there is detected movement near the kitchen or the refrigerator, it

s likely that he is having a snack. The combination of the two activ-

ties (initial movements in the kitchen with specific object surfaces,

ollowed by sitting at the table) improves our confidence that the IADL

ctivity is eating and reduces false alarms by adding more context to

he event.

Our approach to monitoring human activity is based on fuzzy set

heory. One of the advantages of using fuzzy logic for activity mod-

ling is the small sized training data needed to extract the FIS pa-

ameters. Since a fuzzy rule-based system comprises a set of rules

hat are determined heuristically, there is no need for a large train-

ng data set. That said, we do require some training data to deter-

ine the membership function parameters, which is discussed in

ection 7. Another important advantage of the FIS is the ability to

escribe the model linguistically. This is especially useful in our
nterdisciplinary environment where our clinical partners (nurses,

hysicians, physical therapists, and social workers) prefer to inter-

ret the output of the model in order to diagnose the residents

or early intervention using their activity information. We now de-

cribe our sensing modality and data capture process in the next

ection.

. Depth video segmentation

Foreground is extracted on the raw depth images from a single

icrosoft Kinect sensor using a standard background subtraction al-

orithm. The background is learned using the mixture of Gaussian

pproach. Any depth value outside this range is recognized as a fore-

round pixel [2]. We utilize a dynamic background update algorithm

o account for the constant changes in the environment in real world

ettings. The ground plane in the Kinect’s field of view is extracted as

n [2]. Ground points are selected manually during the sensor setup
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Fig. 4. Example of a depth image and its corresponding inpainted image.

Table 1

Comparison of dense SIFT (dSIFT) with the HONV features.

Scenario Number of

horizontal surfaces

dSIFT

detected

dSIFT

FP

HONV

detected

HONV

FP

1 5 4 0 5 0

2 4 4 0 4 0

3 5 4 0 5 0

4 4 4 0 4 0

5 5 5 1 5 0
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and the ground plane is estimated in an iterative manner using the

RANSAC plane fitting method approach described in [15]. An example

of a depth image and its corresponding foreground image is shown in

Fig. 3. A sample video is provided in the url provided.1 The advantage

of depth sensors is that, unlike vision sensors, their performance re-

mains unaffected under low light conditions or even in the dark. The

sensor is positioned in the living environment and does not require

any wearable components. Using only the depth data from the Kinect

sensor protects the person’s privacy since we do not use or store the

color images and only shape information is extracted from the depth

data, i.e., effectively a three-dimensional silhouette.

5. Scene understanding

This section describes our method to obtain surface information

from the scene. Prior to feature extraction, we employ a region filling

operation to remove noisy depth pixels from the image described in

Section 5.1.

5.1. Image inpainting

Most of our previous activity detection algorithms using vision

sensors are based on analysis of foreground objects [1,2]. This could be

as simplistic as tracking the centroid positions of a moving person to

measure the walking speed [2] or using shape descriptors to provide

further insight into the activity state [12]. The work proposed here

uses the cues provided by the scene itself to recognize the activity of

a person. However, in order to identify these cues, the image has to

be filtered. The first step in this process uses a region filling algorithm

which removes random noise generated by the depth sensor. For the

video inpainting algorithm, we use the technique described in Telea

[3]. For our application, the regions to be filled are the black regions in

the image depth image, i.e. all the areas which do not return any depth

values to the sensor (where the infrared emissions do not reflect back

to the sensor). Fig. 4 shows a raw depth image of a room obtained from

the Kinect sensor on the left, and the cleaner image after inpainting

on the right. We can see that some of the artifacts on the table (left)

and the windows (top) disappear after the inpainting technique.

5.2. HONV features and horizontal surface extraction

For the next step, we compute the Histogram of Oriented

Normal Vectors (HONV) for all the pixels in the inpainted image.
1 http://www.eldertech.missouri.edu/adl/
nlike other color image based features such as dense SIFT [1,14],

he HONV features [13] were specifically created for depth images

o provide a description of the local structural features in the depth

mage. For every patch in an image, the HONV feature computes the

ormal vector to that region using depth values. Since depth images

eturn distance values of different objects present in the scene from

he sensor, the normal vector obtained at each of these pixel locations

rom the image provides gradient information about surfaces that can

ighlight the similarities or disparities of surfaces in the field of view.

or each pixel, the orientation is quantized into 8 bins for window

ize of 4 × 4. Then, the top three principal components are retained.

ig. 5 shows the identified horizontal surfaces (pink) extracted using

he top three principal components of the (b) the dense SIFT feature

nd (c) the HONV vector on the inpainted image (Fig. 5a). The win-

ow size as well as the quantization bin values for the dense SIFT

omputation were kept the same as the HONV for a fair comparison.

he regions in the image whose normal vectors are within the range

f the minimum and maximum values of the normal vectors from the

xtracted ground region (method described in Section 4) are high-

ighted in pink. These are the identified horizontal surfaces labeled

o show the number of detected surfaces. The ground region is ex-

luded from the surfaces since we are detecting horizontal surfaces

rom objects above the ground surface.

As shown, the surface labeled 2 in the HONV image (Fig. 5c) is miss-

ng in the dense SIFT image (Fig. 5b). Comparison using five different

cenes (images posted in the link2) is presented in Table 1.

We can see that all the surfaces were detected accurately using

he HONV features. We found the HONV features to work better for

urfaces that are further away from the depth camera as compared to

he dense SIFT features. Also, the processing time is much faster than
2 http://www.eldertech.missouri.edu/adl/

http://www.eldertech.missouri.edu/adl/
http://www.eldertech.missouri.edu/adl/
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Fig. 5. Horizontal surfaces (labeled 1–5) obtained from the inpainted image (left) using the SIFT features (b) and HONV features (c).

Fig. 6. Detecting clutter on the surfaces of the chair circled in red (left) and the table

(right) circled in yellow (a) before activity and (b) after activity using the HONV images

(top three PCA components described in Section 5.2). The chair is cluttered more after

the event and the table is cluttered less which can be used for activity inference as will

be described in the next section. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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Table 2

Rule for near object activity state.

NB DO DS H DH Near object

1 L L M H Z H

Table 3

Rule for field of view activity state.

NB Field of view

2 H H
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he dense SIFT method (approximately half the time). For a 244 × 320

epth image, it takes around 0.8 s to compute the HONV and around

.56 s for the dense SIFT using a six-core i7 machine at 3.4 GHz with

indows 7 ( Fig. 6 and Tables 2 and 3).

. Features for the fuzzy rule based system

In this section, we describe the features we input to our hierarchi-

al system of fuzzy inference for activity reasoning. Once the areas of

nterest are extracted, features are computed for activity recognition.

or a given sequence, these features are calculated only if a moving

bject, hereafter labeled as the Assumed Person (AP) to distinguish

t from scene objects, is detected. This helps to speed up process-

ng so that only sequences with noticeable movement are further

onsidered for activity analysis. For these experiments, the rules and

embership values are developed heuristically using a small training

equence. Rules are added in an iterative manner and those which do

ot improve the performance significantly are removed.

.1. Bounding box features (image plane features)

These are the parameters of the minimum dimension rectangle

hat can be fit to the APs. The three features are the width (BBX), and

rea (BBA) of the rectangle. The temporal differences of BBA and BBX

re also considered, termed DBBA and DBBX, respectively.
.2. Centroid position (volumetric feature)

This is the (x, y, z) location of the moving AP. For input to the

IS system, the difference in these values in consecutive frames is

omputed (temporal differencing). These are called DXY (difference

n XY location) and DH (difference in height), respectively. The height

f the foreground object (H) is also an input to the first level FIS.

.3. Distance from the object (volumetric feature)

This is used to detect the proximity to the object surface. For input

o the first level FIS, the smallest distance between the foreground

bject and the object surface (DO) is considered.

.4. Distance from the sensor (volumetric feature)

This is used to detect the proximity to the Kinect sensor. We con-

ider this input since the depth values are inaccurate when the de-

ected foreground is too close or too far to the sensor. Studies such

s [45], as well as our own experiments indicate that depth values

btained from the Kinect sensor are sensitive to the distance of the

bjects in the field of view to the sensor. If an object is too close or

oo far to the Kinect, the depth values from the sensor get distorted

o that needs to be taken into account in a robust activity recognition

ramework. For input to the first level FIS, the distance between the

entroid of the AP and the sensor (DS) is considered.

.5. Number of points on the boundary (image plane feature)

This parameter is important to determine the confidence of the

erson exiting/entering the field of view. The number of points on

he boundary (NB) is measured by the number of points of the AP

resent on the field of view boundary. This is defined as the number
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Table 4

Rules for bend near object activity state.

DO DXY DS BBX BBA H DH Bend near object

3 L L M N H

4 L M NVH NVH M N H

5 L M NVH NVH M N H

6 L VL M N H

7 VL L M N H

8 VL M NVH NVH M N H

9 VL M NVH NVH M N H

10 VL VL M N H
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of pixels of the AP in the boundary of the depth image plane. More

description can be found in our earlier work described in [16].

6.6. Orientation (image plane feature)

Orientation of the moving AP is computed as the angle (in degrees

ranging from −90 to 90°) between the x-axis and the major axis of

the ellipse that has the same second-moments as the region with the

centroid of the AP as the reference point. For example, the orientation

of a horizontally oriented AP is close to 0°; the orientation of a standing

person would be close to 90°. This input feature is labeled as O to the

FIS.

6.7. Change in ground plane (image plane feature)

This feature detects any changes in the background environment

before and after an activity event. Specifically, if an object such as a

chair is moved, there is a change in the visible ground plane from

the sensor’s field of view. Eqs. (1) and (2) describe the images used

to compute this change. Eq. (1) shows the before-background image

(before the event) as the union of the frames in the first 2 s of the event

using the max operator. This ensures that for a given pixel, only the

farthest value is preserved so that if there are moving objects present

in the scene, they are removed. Similarly, Eq. (2) shows the after-

background image using frames from the last 2 s of the detected event.

The event is identified by any one of three conditions as described in

Section 7.1.

Before BG = ∪frames in first 2 sD(x, y) (1)

After BG = ∪frames in last 2 sD (x, y) (2)

The change in ground plane information (CG) then is the absolute

value of the difference in the number of detected ground plane pixels

between these images.

6.8. Degree of clutter and degree of overlap (image plane features)

The next feature, called degree of clutter of an object surface (DC),

is added to look at what happened to the surfaces before and after

a specific activity involving object interaction. Consider the activity

cleaning table. If the subject is cleaning the table, he/she will remove

or rearrange the table surface to clean it. We can use the change in

the table surface information to gain more insight into the activity.

This is computed as the number of pixels on the horizontal surfaces

(Section 5.2). This parameter refers to how "flat" the horizontal sur-

face is, i.e. the more horizontal the surface, the larger number of hor-

izontal pixels present on the surface. The DC is then the difference in

the number of horizontal pixels detected on the object surface before

and after an activity event. For this, we again use the images BeforeBG

and AfterBG (Eqs. (1) and (2)). For normalization, the number of pixels

on a horizontal surface is divided by the size (area of bounding box of

the surface) of the object. The degree of overlap (DOO) is the number

of horizontal pixels in common between the BeforeBG and AfterBG

images. This determines the change in position of the objects on the

surface of an object. This is also normalized by the object size in the

AfterBG image (using the bounding box of the surface).

7. The fuzzy inference system

The features described above are input to the three-layered FIS for

automated reasoning. Our approach to monitoring human activity is

based on fuzzy set theory [28] which is an extension of classical set

theory. One of the more well-known branches of fuzzy set theory is

fuzzy logic [29]. Fuzzy logic is a powerful automated reasoning frame-

work which comprises an inference system that operates on a set of
ules structured in an IF-THEN format (example: "IF X is A, THEN Y is

"). The IF part of the rule ("IF X is A") is called the antecedent, while

he THEN part of the rule ("THEN Y is B") is called the consequent.

ere, X and Y are input and output variables, respectively while A

nd B are linguistic values that can be interpreted by humans (e.g.

mall, medium, large). These linguistic values can be defined using

embership functions that map any input domain to the real-valued

nterval [0, 1]. These functions can be expressed in different forms

uch as triangular, trapezoidal, Gaussian that represent the degree to

hich the input fits the specific function. We will look at an exam-

le in Section 7.1. In this work, we use the standard Mamdani fuzzy

nference system [29,30]. The system has three levels of fuzzy rules;

he first level involves acquiring the confidences in atomic activity

tates. The second level of fuzzy logic performs activity recognition

rom features of the first level for further complex activity analysis,

nd the final third level is used for further activity inference to ob-

ain IADL and ADL recognition. The linguistic summaries generated as

utput from the FIS have the advantage of being understandable by a

uman while achieving our goal of automated activity reasoning.

.1. First layer FIS

This section describes the rules which determine the confidence

or atomic activity states of near object, at boundary of field of view (of

he sensor), downward motion near object (bend near object), upward

otion near object (rise near object), move object, on object, on object

orizontal (on object hor), walk and previous state. By previous state,

e mean that the same activity state as the previous frame is con-

inuing in the current frame. The rule used to detect this is provided

n Table 8. When we describe events involving interaction with an

bject, we specifically mean interaction with the horizontal object

urface. For the rest of the paper, we will use this terminology. For

ur current experiments, 37 rules are used. In the interest of compu-

ational efficiency, we kept the rule base as small as possible. These

ules are fired when at least one of the following three conditions are

atisfied:

• When someone enters or exits the field of view.
• When the time elapsed is greater than 2 min and someone has

been in the field of view during the time period.
• When there is change in height below 10 in. from the 3D depth

information of the moving objects.

We categorize the rules into nine tables, one for each of the nine

tomic activity states. For the first group, the five parameters used

re NB, DB, DS, H and DH (described in Section 6) with trapezoidal

r triangular membership functions. The membership functions for

he input features are shown in Fig. 7. The membership functions for

ll the output variables are shown in Fig. 8. All the antecedents are

oined using the AND operator as a connective for the rule generation.

Table 4 provides the rules for low-level activity state bend near

bject. Note that the fuzzy membership not very high (NVH) is de-

ned as the complement of VH i.e. NVH = 1 − VH. Hence, the fuzzy

embership function for that is the complement of the membership

unction for VH (Table 5).
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Fig. 7. Membership function plot for input features NB, DO, DS, H, and DH. Here, the Y axis is the membership value ranging from 0 to 1.

Fig. 8. Membership function plot for output variables. Here, the Y axis is the membership value ranging from 0 to 1.

Table 5

Rules for rise near object activity state.

DO DXY DS BBX BBA H DH Rise near object

11 L L M P H

12 L M NVH NVH M P H

13 L M NVH NVH M P H

14 L VL M P H

15 VL L M P H

16 VL M NVH NVH M P H

17 VL M NVH NVH M P H

18 VL VL M P H
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Table 6

Set of fuzzy rules for level 1.

DXY DS H O DH On object

19 L M VL P N H

20 L M VL P N H

21 L M VL P Z H

22 L M VL N N H

23 L M VL N N H

24 L M VL N Z H

Table 7

Set of fuzzy rules for level 1.

DO DXY DS H O DH On object Hor

25 L L M VL NU N H

26 L L M VL NU N H

27 L L M VL NU Z H
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Fig. 9 shows the membership functions for DXY, BBX, BBA, DBBA,

BBX, O, and CG.

Table 7 gives the rules for on the object horizontal state. If the

rientation of the foreground object is not horizontal, then it will

enerate a stronger confidence for the rules from Table 6. Otherwise

t will have a stronger confidence for the rules from Table 7.

Table 8 gives the rules for evaluating the confidence for move

bject. Move object is part of cleaning the house or the housekeeping

ADL and is also an identifier of scene change. Here, moving an object

s identified by a sudden increase in the area and the width of the

ounding box features while the person is near the object. The lin-

uistic interpretation of Rule 29 is: IF the Distance from Object (DO)
s High and the Difference in Bounding Box width (DBBX) is Low and

he Distance from Sensor (DS) is Medium and the Change in Ground

CG) is High, THEN the membership for Move Object is Very High.

Previous state indicates that there is no significant change in ac-

ivity state as compared to the previous frame. The rule used to

etermine this is provided in Table 9.
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Fig. 9. Membership function plot for the next set of input features.

Table 8

Set of fuzzy rules for activity state move object.

DO DBBX DS CG Move object

28 L H M M H

29 L H M H VH

30 L M M M H

31 L M M H VH

32 L H M M H

33 L H M H VH

34 L M M M H

35 L M M H VH

Table 9

Set of fuzzy rules for activity state previ-

ous state.

DH DXY Previous state

36 VL VL H

Table 10

Set of fuzzy rules for activity

state walk.

H DXY Walk

37 H H H

c

a

t

7

f

o

c

T

p

o

t

f

c

c

c

t

Table 10 gives the simple rule to detect walking. Here, the idea is

that if the height of the moving object is high and the change in the

x–y coordinates from the previous frame is high, then there is a strong

confidence of the activity state being a walk.

Using the above set of rules, we can obtain the confidence of the

atomic activity states for the individual frames. Individual atomic

states were detected only when the confidence values exceeded 0.5.

This also takes care of the condition when there are no rules fired

since in that case, the default value for the states is 0.5. Summaries

are then generated for each of these atomic activity states after tem-

poral filtering using a window size of three frames (about 0.5 s). The

information is stored by retaining the beginning and end time of that

state, as well as the confidence value for that summary (max of the

confidence values in that time interval). These atomic states are then

used for the second level activity segmentation. While this is not

a complete set of rules by any means, the rule set is able to iden-

tify the states of the small training dataset. If we were to evaluate

a complete set of all the possible combinations of the fuzzy mem-

bership functions, there would be at least 145 rules as compared to

the 37 rules currently implemented. This would not only increase the
omputation time exponentially but also make the system difficult to

dapt if we tried to learn all the parameters using artificial intelligence

echniques.

.2. Second layer FIS

The next level of fuzzy logic performs activity recognition using

eatures computed in the first level. For this stage, we primarily focus

n four general activity states involving horizontal surfaces: clean,

lutter, rearrange and vertical movement near the horizontal surface.

he features we use to determine the activity have been described

reviously in Section 6.8 termed degree of clutter (DC) and degree

f overlap (DOO). When there is an increase in the degree of clutter,

he high-level activity state may be clutter object. Some more features

rom first level activity inference need to be satisfied to increase our

onfidence for clutter object activity. Similarly, when there is a de-

rease in the degree of clutter, the high-level activity state can be

lean object and if there is no significant change in the degree of clut-

er, the high-level activity state can be rearrange object. This means
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Fig. 10. Membership function plot for the second state input features.

Table 11

Set of fuzzy rules for clean object.

DC DD DF UD UF Clean object

1 P H H H

2 P VH H H

3 P H VH H

4 P H H H

5 P VH H H

6 P H VH H

7 P H H H

8 P VH H H

9 P H VH H
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Table 12

Set of fuzzy rules for clutter object.

DC DD DF UD UF Clutter object

1 N H H H

2 N VH H H

3 N H VH H

4 N H H H

5 N VH H H

6 N H VH H

7 N H H H

8 N VH H H

9 N H VH H

Table 13

Set of fuzzy rules for rearrange object.

DC DOO DD DF UD UF Rearrange object

1 NU L H H H

2 NU L VH H H

3 NU L H VH H

4 NU L H H H

5 NU L VH H H

6 NU L H VH H

7 N L H H H

8 N L VH H H

9 N L H VH H
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hat while there is interaction with an object, there is no significant

hange in its surface clutter during the activity. If there is any upward

r downward movement near the object, the high-level activity state

s vertical movement near object. This state is unaffected by the de-

ree of clutter feature (DC) and is just used for any state that involves

ither bending or rising (or both) near an object.

Consider the high-level activity clutter object. This occurs when

here is interaction with the object and simultaneous increase in the

C feature when we compare the surface before and after the event.

t the same time, there is bending and rising movement (vertical

ovement) detected near that object. The object can be a bed, a table,

countertop, a couch or any other object with a horizontal surface.

sing the summaries generated by the previous stage, the upward

otion frequency, the upward motion duration, the downward mo-

ion frequency, and the downward motion duration are computed for

very minute with a window size of 5 min.

The rules for clean object activity state are given in Table 11. Here,

he input feature down duration (DD) is the activity summary for

he state bend near object extracted from the first level of our FIS

ystem. Similarly, up duration (UD) indicates the summary for rise

ear object. The membership parameters for DD and UD, as well as

p frequency (UF) and down frequency (DF) are shown in Fig. 10. The
utput membership functions for clean object, clutter object, rearrange

bject and vertical movement near object are the same as in Fig. 8.

The clutter object fuzzy rules are given in Table 12. The only dif-

erence in the rules for vertical movement near object is that there is

o input feature DC in the rule base. The other membership function

alues remain the same.

Table 13 gives the set of rules for rearrange object activity model.

ere, the surface of the object is rearranged without any change in

he degree of clutter. This activity could be a part of housekeeping
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Fig. 11. High-level state membership plot for a part of the clean object activity state. The duration of the plot is around 5 min. Here, the X axis is the frame number and the Y axis is

the confidence value for the activity states ranging from 0 to 1. (For interpretation of the references to colour in the text, the reader is referred to the web version of this article.)

Table 14

Fuzzy rule base for eat activity.

VMNCD OCD NTD Eat

1 H H H H

2 H VH H H

3 VH H H H

4 H H VH H

5 H VH VH H

6 VH H VH H

7 VH H M H

8 H H M H

9 VH M H H

10 H M H H

11 M H M H

12 M H M H

13 M H H H

14 M H VH H

15 VH M H H

16 H M H H
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when someone lifts items from a surface, cleans the items and then

replaces them in a different location.

Once the confidences for the three high-level activity events are

generated, summaries are created by merging two or more events

which take place within a 1 min interval. We again threshold it by

filtering out the states with confidence value below 0.5 to reduce the

number of rules required for each activity state since it removes the

need to define rules with Low output membership. The summaries for

this high-level activity include the time stamps of the beginning and

end of each activity segment, as well as the overall confidence of the

high-level activity state is computed using the maximum confidence

value generated during the event. A sample of the state memberships

for a small segment of clean object activity is shown in Fig. 11. The

red line represents the clean object state, the green line represents the

membership for the clutter object state, and the black line represents

the vertical movement near object state. We see that there is a high

confidence for vertical movement near object initially while there is a

concurrent increase in clean object confidence. During this entire time

period, the confidence clutter object activity state is never above 0.5.

7.3. Third layer FIS

This is the final stage of our hierarchical fuzzy rule based system.

The third stage is included to eliminate certain false alarms at the

second level. One of the examples for such a scenario is the eating

activity. Suppose a person is detected in the kitchen with multiple

movements near the countertop while he is preparing the meal or

snack. After that, he sits down in a chair and there is detected inter-

action with a table (dining table) in front while he is eating. In this

case, since the person was detected with initial interaction with the

countertop followed by interaction with the dining table, our confi-

dence in the eating activity will be much higher than if we were just to

detect the person sitting at the dining table. To build such a summary,

we need at least a three layered hierarchical model. By adding this

third layer, we can incorporate the events occurring before (or after)

a specific event to give it more context and to generate a hierarchical

order of events to define complex activities. The temporal aspect of

our activity model exists in each layer of our hierarchical model. In

the lowest level, the temporal aspect is present since we detect the

"change" from the previous frame so some of the features such as DH

are temporal in nature. For the next layer, the temporal summaries

(since they contain time stamps to represent the duration of each

atomic activity state) from the first layer are used as input features.

Even in this final layer of our model, we use the temporal aggregated

features like near table duration (NTD) that utilizes the time duration
f the high level activity state. The membership functions for the three

nput features: vertical movement near counter duration (VMNCD),

n chair duration (OCD), near table duration (NTD), and the eating

utput are shown in Fig. 12.

The time stamp of the beginning of the first activity segment with

membership of over 0.5 defines the beginning of the eating activity

egment. Correspondingly, the end of the segment is taken as the end

f the activity. The maximum confidence during this interval is chosen

o be the overall confidence of this detected activity. The combina-

ion of these three parameters then forms the overall eating activity

ummary. Table 14 describes the rules for the eating activity. An ex-

mple of one of the rules is: IF the activity state Vertical Movement

ear Counter Duration (VMNCD) is High and the On Chair Duration

OCD) is High and the Near Table Duration (NTD) is High, THEN the

embership for Eat is High.

But what if the person prepares the meal at the counter and instead

f sitting and eating at the dining table, chooses to eat at the counter?

here could be other variations in the order of the different high-

evel activity states depending on the individual and other extraneous

actors. The rules from Table 14 may not get fired in this case! In order

o address this, we have the unknown event recognition framework

escribed in Sections 7.1 and 7.2. In that case, although we may not

e able to identify the activity state eating, we will still be able to

et the interaction with the object surfaces (in this case, the counter

nd/or the dining table). This partial summary; along with some more
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Fig. 12. Membership function plot for the second state input features VMNCD, OCD, and NTD.
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ontextual information from the ontology in Fig. 1 such as time of day,

ocation in the house; can then be used for comparison with similar

ctivity summaries.

. Results

To test the proposed recognition methods, we use two data sets

nd compare results with the HMM. The first dataset was recorded

n a controlled environment with subjects performing specified ac-

ivities. The second is a sample of data collected in an apartment at

igerPlace with an older resident performing activities as a part of

is normal routine. There are several available datasets with RGB-D

ata of different activities. Specifically for ADLs, the Cornell Activity

atasets: CAD 60 and CAD 120 datasets consist of several different

DLs and IADLS like eating, drinking, cleaning [31]. However, there is

o contextual temporal information in the depth data. For example,

he video sequence showing the eating activity just shows a person

unching on an apple. There is no information about what happened

efore (e.g., the person went to the table and got an apple) and what

appened later (e.g., cleaning up). Since our algorithm relies on this

nformation, these datasets are unsuitable. Furthermore, the algo-

ithm implemented by the Cornell group uses the RGB information as

ell as the depth data which causes privacy concerns for a continuous

onitoring application.

.1. Experiments in a controlled setting

We test our algorithm in laboratory settings with six individuals.

ach individual is asked to perform the activity in a natural, normal

ay. Depth data are recorded using the Microsoft Kinect sensors at

frame rate of approx. 6.5 frames/s for a duration of 15 days con-

inuously, i.e. for a period of approximately 360 h. The training data

re not a part of the test sequences described in this section. There

as also partial occlusion present in some of the events to test the

obustness of our algorithm. The data can be downloaded from this

ink.3 Healthy participants (three male and three female, height rang-

ng from 5 ft to 6 ft, weight ranging from 115 pounds to 200 pounds)
3 http://www.eldertech.missouri.edu/adl/

c

m

ere recruited between the ages of 25–38 for this part of the experi-

ent. They were asked to perform the activities at their normal pace,

s well as at slower speeds to emulate the behavior of older adults.

e then run the HMM algorithm on the same dataset with the same

nput features to compare the results.

An HMM is a generative probabilistic model, that generates hid-

en states from observable data [17]. Each activity category, such as

alking, has a separate HMM that is trained via the Baum–Welch pro-

edure [20,21]. The most likely model is calculated for each observa-

ion sequence according to the forward–backward procedure [20,21].

ince the model measures the joint likelihood of the observation se-

uences, the final likelihood value is very low. To rescale this value,

e use the log likelihood value instead of just the probability value.

he model with the highest log-likelihood value is then selected as

he most likely activity label [27]. For our implementation, we use the

evin Murphy toolbox [19] and train activity models for the follow-

ng general activities that are part of ADLs and IADLs: sitting, walking,

leaning objects, cluttering objects, moving objects, moving near objects,

nd rearranging objects (described in Sections 6 and 7). The objects

sed are two chairs, one small table, one large table, a couch, and a

ed. We also build models for two popular complex IADLs: making

ed, and eating a meal. A 10-fold cross validation method was used

o train and test the HMM with the number of hidden states varying

rom 2 to 8. The optimal number of hidden states was found to be 7,

hich was used for the results shown in Table 15. We implemented

he Hierarchical HMM model described in [43] for the high-level ac-

ivity state recognition. For the activities clean, clutter and rearrange,

e use a two level HHMM; for make bed and eat, we use a three level

HMM. We do this to enable a fair comparison of our hierarchical

lgorithm with the HHMM algorithm. For our experiments, we have

ept the number of substates in each level at the default value of 7.

e have further implemented the algorithm described in [44] that

escribes a thresholded version of the HMM (HMMth) to account

or the possibility that the activity may not be a part of any of the

ategories. We do so by creating a weak classifier that trains on all

he activities and provides the minimum threshold to decide if the

urrent activity belongs to the categories or not [44].

From Table 15, we see that our algorithm outperforms the HMM

odel. The results highlight the strengths of our proposed algorithm.

http://www.eldertech.missouri.edu/adl/
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Table 15

Activity detection (AD) and false positive (FP) results using lab dataset. Here HMM refers to HMM for

the atomic activity states and HHMM for the complex activities. HMMth refers to the thresholded

version of HMM described earlier in the section.

Activities HMM AD HMM FP HMMth AD HMMth FP FIS AD FIS FP

Walk 47/50 17 47/50 11 50/50 2

Sit 46/50 13 46/50 8 50/50 5

Clean object 26/30 13 26/30 11 28/30 6

Clutter object 26/30 13 25/30 13 29/30 5

Move near object 27/30 16 27/30 14 30/30 2

Rearrange object 25/30 14 24/30 12 28/30 5

Move object 26/30 11 26/30 11 29/30 5

Make bed 20/24 6 18/24 4 24/24 3

Eat 17/20 9 16/20 8 19/20 4

Fig. 13. The system setup at TigerPlace. The Kinect sensor is positioned over the front

door of the apartment and the computer is placed inside the cabinet highlighted in

yellow. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)
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The one instance that our algorithm was not able to detect the eat-

ing activity was due to the subject being outside the field of view

while preparing the meal. This generated a low confidence for the

activity state vertical movement near object (in this case the counter)

which consequently affected the confidence for the eating activity

state. For the false positives, the HMMth significantly improves the

performance for the HMM approach as compared to the baseline

HMM method. However, in some cases it also slightly reduces the

recognition rate, e.g. for the clutter object activity. The overall better

performance of our model is not surprising since our system can han-

dle uncertainty in the activity due to its fuzzy rule based system. For

example, in our data set for the controlled setting (Section 8.1), for

one of the instances, Actor 2 went to the table a couple of times to get

water. On the other hand, Actor 1 did not get water while eating. In

the training data for our fuzzy model, the actor (who was not a part

of the controlled setting experiment) did not get up and fetch water

during eating. However, in both the cases, the activity was identified

as eating, although for different durations and with different confi-

dences. In the former case, the confidence was 0.8 as compared to the
Fig. 14. Foreground images of eating activity at TigerPlace. Here, the resident (a) prepares th

finally sits down and eats the meal at the table.
econd instance (0.72) since the vertical movement near counter du-

ation (VMNCD) parameter was higher in the former case. Thus, our

odel can incorporate more variations in a given ADL/IADL model

han other activity models.

.2. Experiments in a home environment collected at TigerPlace

In this section, we evaluate the performance of the algorithm from

epth data collected in an apartment of a resident at TigerPlace. The

esident is of age 88, without any cognitive impairments, living in-

ependently at TigerPlace. He does not use any ambulatory support

uch as a walker, and suffers from muscle weakness, and chronic

onditions like asthma and diabetes. He currently does not need any

upport from the TigerPlace staff to perform IADLS and ADLs which

akes him an ideal subject to test our system. The system consists of

single Microsoft Kinect sensor mounted near the ceiling above the

ront door of the apartment and a computer placed in a cabinet above

he refrigerator (Fig. 13). The data are collected in an unstructured

etting while the elderly resident is going through his normal rou-

ine. Six hours of continuous depth data are processed and analyzed

o evaluate the performance of our algorithm. The data are captured

t approximately 6.5 frames/s using the same data capture process as

or the controlled environment described in Section 8.1. Since this is

n unscripted data capture in an unstructured environment, there are

everal instances of occlusion present which further test the robust-

ess of our algorithm. During this time, there are several instances of

itting, walking, and moving around in the room as the resident goes

hrough his normal routine. There are two eating activities performed

uring this time period.

Fig. 14 shows the images of the resident preparing his meal at the

ounter (a) and eating the meal at the dining table (c). The locations

re labeled for clarity.

The results of the activity detection from the TigerPlace dataset

re shown in Table 16. The FIS system and the HMM models used in

his experiment are the same as those described in Section 8.1. The

ata are manually labeled to obtain the ground truth.
e meal on the countertop, (b) places the items of the meal on the dining table and (c)
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Table 16

Activity detection results using HMM and FIS.

Activities HMM AD HMM FP HHMth AD HMMth FP FIS AD FIS FP

Walk 14/15 6 14/15 5 15/15 0

Sit 5/8 5 5/8 3 7/8 0

Clean object 3/4 7 3/4 4 4/4 1

Clutter object 2/3 4 2/3 4 3/3 1

Move near object 5/7 3 4/7 3 7/7 0

Rearrange object 2/2 6 2/2 5 2/2 1

Eat 1/2 1 1/2 0 2/2 0
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The results show that the FIS outperforms the both the HMM mod-

ls in the unstructured settings. Similar to the results obtained in

ection 8.1, the HMMth has a lower false alarm rate, although in the

ase of the move near object high-level activity state, the performance

ecreases slightly due to the thresholding effect of the algorithm.

his further highlights the robust performance of our algorithm in

ynamic settings. The one instance where our algorithm fails to de-

ect the person sitting is due to the chair being located far away from

he sensor. The chair is located at a distance greater than 6 m from

he location of the Kinect. This exceeds the range and is one of the

imitations of the Kinect depth sensor. The false positives generated

y our algorithm for the clean object, clutter object, and rearrange ob-

ect high-level activity states indicate that there is definitely room for

mprovement in our approach that may be eliminated by incorpo-

ating machine learning methods to "learn" the parameter values of

he fuzzy rules. However, our approach still outperforms the HMM

nd its variation approaches in the unconstrained environment that

ighlight its generalizability and emphasize its potential to be used

n a continuous monitoring application to detect health change from

ehavior patterns.

. Conclusions

We demonstrate a flexible framework for detecting ADLs in an in-

ome environment using depth data from the Kinect sensor. Depth

ata provide the added advantage of unobtrusive monitoring with

ts ability to perform just as well under different lighting conditions.

ilhouette features from the depth data as well as scene features are

xtracted and input to a fuzzy inference system, and activity states

f the individuals are determined using fuzzy confidence measures.

he resulting fuzzy rule based outputs are then temporally processed

nd used to generate temporal activity summaries. These summaries

re input to another fuzzy inference system for further activity rea-

oning. This approach results in human understandable information

nd confidences regarding activities which can be used to monitor

he activity patterns of older adults in their daily routine. The gen-

ralized framework can handle uncertainties in activities performed

nd generate useful information even with automatically extracted

nlabeled object surfaces. In addition to the lab experiments, the al-

orithm has been tested using data collected at TigerPlace and has

hown its robustness in unstructured, dynamic environments.

0. Future work

We highlight the importance of our algorithm’s generalized frame-

ork for activity modeling. One question that needs answering is how

s this useful in a dynamic unstructured environment where there are

ome unlabeled surfaces present? Since our algorithm updates the

urfaces in the field of view on a daily basis as well as when there is

detected change in any object surface, it can identify new surfaces

hat are yet to be labeled. Our algorithm then identifies the occurring

ctivity as: There is interaction with Surface No. 2 at X time (time

f day) for Y duration. We can thus get useful information about an

nknown activity. The next question then is how is this useful for

onitoring day to day behavior patterns? We believe that these in-
eractions can be analyzed over some time period and trends from

hese interactions can be detected. For example, there could be inter-

ction with Surface No. 2 at X time every day. The interactions with

ll the surfaces can be used to study behavior patterns and following

hat, to detect anomalies in behavior over extended time periods, e.g.

f the interaction was missing for a few days, that would indicate a

hange from the normal behavior pattern.

Many of the quantities used in this work are based on empirical

bservations. To address this, automated tuning of rules and member-

hip functions using evolutionary computation techniques will also

e considered. Currently, we have manually labeled the horizontal

urfaces with their labels for instantiations, such as the bed surface;

s well as the locations such as bedroom, living areas. In the future,

e hope to automatically identify the objects by incorporating ob-

ect recognition techniques and using context to glean the location

nformation (e.g. bed is most likely to be in the bedroom). We have

urrently looked at activities involving interaction with only hori-

ontal surfaces. We plan to extend this work to vertical as well as

blique surfaces using the HONV feature information. This will fur-

her improve the generalizability of our algorithm. Also, we have used

nly depth data in our current approach. We plan on testing features

xtracted from both, the color data as well as the depth data and

ompare the systems.

We build a framework that generates temporal activity summaries

f daily behavior over longer time periods. This can be coupled with

ctivity information obtained from other sensors such as bed sensors,

coustic sensors, and motion sensors to generate more descriptive ac-

ivity patterns. An in-home activity monitoring system would benefit

reatly from our algorithm to alert healthcare providers of significant

emporal changes in ADL behavior patterns of frail older adults for

all risk and cognitive impairment.
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