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A Microphone Array System for Automatic
Fall Detection
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Abstract—More than a third of elderly fall each year in the
United States. It has been shown that the longer the lie on the floor,
the poorer is the outcome of the medical intervention. To reduce
delay of the medical intervention, we have developed an acoustic
fall detection system (acoustic-FADE) that automatically detects
a fall and reports it promptly to the caregiver. Acoustic-FADE
consists of a circular microphone array that captures the sounds
in a room. When a sound is detected, acoustic-FADE locates the
source, enhances the signal, and classifies it as “fall” or “nonfall.”
The sound source is located using the steered response power with
phase transform technique, which has been shown to be robust
under noisy environments and resilient to reverberation effects.
Signal enhancement is performed by the beamforming technique
based on the estimated sound source location. Height information
is used to increase the specificity. The mel-frequency cepstral co-
efficient features computed from the enhanced signal are utilized
in the classification process. We have evaluated the performance of
acoustic-FADE using simulated fall and nonfall sounds performed
by three stunt actors trained to behave like elderly under different
environmental conditions. Using a dataset consisting of 120 falls
and 120 nonfalls, the acoustic-FADE achieves 100% sensitivity at
a specificity of 97%.

Index Terms—Beamforming (BF) and height information, fall
detection, microphone arrays, sound source localization.

I. INTRODUCTION

ACCORDING to a Center for Disease Control report [1],
more than one third of older Americans fall each year.

For elderly, falls are the leading cause of death [1]. In 2007
alone, over 18,000 older adults died from fall injuries [1]. Falls
are also the most common cause of nonfatal injuries such as
lacerations, hip fractures, or head traumas [2]. In these cases, it
has been found that the longer the lie on the floor, the poorer
is the outcome of the medical intervention [3]. Among entirely
elderly population, those living alone have the greatest risk of
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delayed intervention. As a consequence, each year, about 3% [4]
of them are found helpless or dead at home by paramedics.
To address the problem of medical intervention delay, it is

imperative to detect the falls as soon as they occur so that im-
mediate assistance can be provided. A variety of fall detection
methods have been published in the recent scientific literature.
There are two main types of fall detection devices: wearable
and nonwearable. Wearable devices, like accelerometer-based
ones [5]–[8], detect falls by measuring the applied acceleration
along the vertical axis. Although the wearable devices are ver-
satile and effective in both indoor and outdoor environments,
they often have power management problems and potential in-
convenience for carrying them all the time during daily living
activities. Some nonwearable devices include floor vibration
sensors [9]–[11], video cameras [12], [13], IR cameras [14], and
bed sensors [15]. The floor vibration sensors [9] are inexpensive
and privacy preserving, but their performance is dependent on
the floor type. Video cameras, IR cameras, and bed sensors are
promising technologies that are still trying to address challenges
related to low light, field of view, privacy, and high cost. In this
paper, we describe an acoustic fall detection system (acoustic-
FADE) that detects a fall as soon as it occurred based on its
sound signature since the acoustic sensors are practically easy
to use, able to handle privacy issues, reliable, and inexpensive.
Several previous works [10], [11], [16], [17] have described

acoustic-FADEs based on a linear array of microphones. In ad-
dition, we investigated several fall detection algorithms for use
with the microphone array such as fuzzy rule methods [16] and
one-class classifiers [17]. However, previous acoustic systems
had limited success in increasing the specificity due to the envi-
ronmental noise and interference, in part because they were not
considering the entire spatial information related to the sound
source. The study in [18] showed that a vertical linear micro-
phone array can greatly increase the specificity by using the es-
timated height of the sound source and passing the near-ground
signals (e.g., with detected height <0.5m) to the classification
algorithm. This approach not only improves the specificity, but
also increases the computation efficiency. However, the height
estimation accuracy using a linear array is very sensitive to
the acoustic properties such as background noise, reverberation,
and interference. In addition, the height estimation itself was
not reliable due to the conical shape localization ambiguity of
the linear microphone array. To deal with these challenges, we
proposed a new version of acoustic-FADE [19] that employs
an eight-microphone circular array for person tracking and fall
detection.
Beamforming (BF) can enhance the desired signal and reduce

interferences such as from TV, radio, or phone ringing. In this
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Fig. 1. Acoustic circular microphone array configuration.

paper, we use BF to improve the classification performance in
realistic environments that often have large background noise
and strong interferences. The BF technique is widely used in a
variety of applications, such as videoconferencing [20], human–
robot interaction [21], and bird monitoring [22] for increasing
sound quality. BF requires sound source localization and we
use steered response power with phase transform (SRP-PHAT)
method [19] to locate the source. For sound classification, we
apply the mel-frequency cepstral coefficients (MFCCs) features
with a nearest neighbor (NN) approach, as previously used in
[18] and [19].
The acoustic-FADEs proposed in [16]–[18] use a single mi-

crophone and the specificity is low. In [19], although a cir-
cular array is employed, it only focuses on locating the sound
source and does not use anymethod on improving the signals for
better classification. The cross-validation results show that the
acoustic-FADE in [19] has a low specificity of about 90% in or-
der to reach at a sensitivity of 87%. In this paper, in continuation
of our preliminary work in [19], we propose the acoustic-FADE
which improves the sound source localization accuracy, utilizes
the estimated source height to increase the specificity, applies
BF to enhance the received signals, and employs feature-based
classification to improve the fall detection performance.
The structure of the paper is as follow. In Section II, we

describe the proposed acoustic-FADE. Section III presents
the sound source localization and BF techniques. In Section IV,
we elaborate the methodology of fall detection. Section V de-
scribes the data and performance evaluations. Section VI pro-
vides the results and Section VII is the discussion. Finally,
Section VIII concludes the paper.

II. PROPOSED ACOUSTIC-FADE

The proposed acoustic-FADEhas two components: the acous-
tic sensor hardware and the data processing software. The acous-
tic sensor is a circular microphone array, as shown in Fig. 1,
that consists of eight omnidirectional microphones uniformly
distributed along a circle having a radius of 0.25m. From ar-
ray signal processing literatures, wider separation of array el-
ements gives better localization accuracy. However, the sepa-
ration between microphones should not be larger than the half

Fig. 2. (a) Front view of an amplifier-integrated microphone. (b) Front view
of the microphone array (numbers mark the indices of microphones).

Fig. 3. Processing block diagram of the proposed acoustic-FADE (Thr =
positive scalar height threshold, “Y ”: yes, “N ”: no, “1”: classified as a fall, “0”:
classified as a nonfall).

signal wavelength to avoid spatial aliasing [20]. The fall sig-
nal has highest frequency component around 1000Hz, which
corresponds to a wavelength of about 35 cm. The separation of
microphones should therefore be about 18 cm. This will be sat-
isfied when choosing the radius of the array as 25 cm [19]. Each
microphone component has an amplifier and a gain adjuster, as
depicted in Fig. 2(a). Fig. 2(b) depicts the actual microphone
array assembled. The array has enough coverage for a typical
living room.
The acoustic signals from the microphones of the array are

sampled synchronously at a rate of 20 KHz and the data are
quantized to 12-bit resolution by data acquisition boardmounted
on the back side of the array.
Depending on the manufacturing variations, the gain and

phase delay of each microphone element may differ from one
another which can degrade the performance of sound source
localization and BF. The microphone array is carefully cali-
brated using a white noise signal emitted at a known location to
ensure each microphone has the same gain and phase character-
istics [19].
For the software component, the processing block diagram

of the proposed acoustic-FADE is shown in Fig. 3. From the
sound data collected by the microphone array, we first apply
localization to determine the position of the sound source.
If the source is found to be located above ground when the

estimated height of the source is larger than a threshold Thr, it
will be considered as from a nonfall and no further processing is
needed. Otherwise, BF is used to enhance the sound signal using
the estimated source position. MFCC features are extracted and
a NN classifier determines if the sound is from a fall. We shall
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explain the individual blocks in different sections in the follow-
ing (the utilization of the estimated source height is considered
as a component for classification).

III. SOUND SOURCE LOCALIZATION AND BF

In practical environments, the fall sound may have low SNR
and could be corrupted by interference. It is necessary to enhance
the acoustic signal in order to achieve better detection accuracy.
Improving an acoustic signal using a microphone array requires
the location of the source. Given the signal measurements ob-
served by a microphone array, the first step is to estimate the
source location and BF can be followed to enhance the acoustic
signal.
In the near-field scenario, the signal wavefront is curved,

and traditional direction of arrival methods such as Mul-
tiple Signal Classification (MUSIC) [23], which assumes
a planner wavefront, are not appropriate to determine the
source location. Furthermore, reverberation effect could be
significant in typical home environments, where the micro-
phone array is deployed. We shall use a different local-
ization method than MUSIC that is robust and resilient to
reverberations.
The steered response power (SRP) [24] technique provides

reasonably accurate near-field source location estimate under
very noisy conditions. Its variation, SRP-PHAT [25], is able
to yield a better source location estimate than PHAT under
reverberation environments. We shall describe below the signal
model, the SRP and SRP-PHAT methods for the localization of
a sound source.

A. Measurement Model

Let uo be the true 3-D position in the Cartesian coordinate of
a sound source to be located. The source radiates a signal and
it is received by a sensor array that has M microphones located
at si, i = 0, 1, . . . , M − 1. The observed signal at microphone
i is modeled as follows:

xi(n) = s(n − τo
i ) + ε(n), n = 0, 1, . . . , N − 1 (1)

where the sampling time interval is normalized to unity andN is
the total number of data points. s(n) is the source signal, ε(n) is
the random noise, and τo

i is the propagation delay for the source
signal to reach microphone i. To minimize the reverberation
effect, our previous study [26] shows that the processingwindow
for sound source localization should be around 25ms (N =
25 ms × 20 KHz = 500 data points) started at the beginning of
the signal.
Without loss of generality, we choose sensor 0 as the reference

sensor for representing the relative propagation delays of the
signals at different sensors. Hence, τo

0 = 0 and

τo
i =

1
c
(|uo − si| − |uo − s0 |), i = 1, . . . ,M − 1 (2)

where c is the signal propagation speed. The symbol |·| de-
notes the Euclidean norm and |uo − si| is the distance be-
tween the source and the ith sensor. We would like to esti-

mate the source position uo using the signal measurements
xi(n), i = 1, . . . ,M − 1, from the microphone array.

B. Steered Response Power

If we assume that the source is at certain position u, the
delays for the source signal to reach the microphones can be
regenerated based on (2):

τi(u) =
1
c
(|u − si| − |u − s0 |), i = 1, . . . ,M − 1. (3)

After correcting the delays from the microphone outputs and
adding them together, we have

z(n) =
M −1∑

i=0

xi(n + τi(u)). (4)

The energy of z(n) is expected to be largest when the assumed
location is equal to the true location uo in the absence of noise
because the delay corrected microphone outputs are aligned
exactly and added coherently to form z(n). It is based on this
idea that the SRP method estimates uo by maximizing

JSRP(u) =
N −1∑

n=0

z2(n) =
N −1∑

n=0

M −1∑

i,j=0

xi(n+τi(u))xj (n+τj (u))

≈
M −1∑

i,j=0

Ri,j (τi(u) − τj (u)) (5)

where

Ri,j (λ) =
N −1∑

n=0

xi(n)xj (n − λ) (6)

is the cross correlation betweenxi(n) andxj (n) at relative delay
λ. The approximation in (5) is valid whenN is large, which can
be easily satisfied for our application. The relative delay λ can
be any real value and the cross correlation is computed via the
Fourier transforms of xi(n) and xj (n) as follows:

Ri,j (λ) =
1
N

N −1∑

k=0

X∗
i (k)Xj (k)e−j (2π/N )kλ (7)

where Xi(k), i = 0, 1, . . . ,M − 1 is the fast Fourier transform
(FFT) of xi(n) and (·)∗ is the complex conjugate of (·). Since the
SRP function is highly nonlinear with respect to u, numerical
search is needed to maximize JSRP (u).
The SRP method can be summarized as follows. For each

hypothesized source position u,
1) obtain τ i(u) and τ j (u) using (3), for i, j = 0, 1, . . . ,M −

1;
2) findRi,j (τ i(u)− τ j (u)) via (7), for i, j = 0, 1, . . . ,M −

1;
3) compute SRP function JSRP (u) using the second line of

(5).
The source location estimate is the position where JSRP (u)

has the largest value.
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C. Steered Response Power With Phase Transform

The SRP-PHAT applies a prefilter with frequency character-
istics

H(k) =
1√

|Xi(k)Xj (k)|β
(8)

to xi(n) and xj (n) before cross correlating them. The parameter
β is a user-defined constant that is between 0 and 1. The resulting
cross correlation becomes

R̃i,j (λ) =
1
N

N −1∑

k=0

X∗
i (k)Xj (k)

|Xi(k)Xj (k)|β e−j (2π/N )kλ. (9)

The SRP-PHAT scoring function is

JSRP-PHAT(u) =
M −1∑

i,j=0

R̃i,j (τi(u) − τj (u)). (10)

The source location estimate û is the value of u that maximizes
JSRP-PHAT (u). Again, numerical search is needed due to the
complicated nature of the JSRP-PHAT (u) surface. Under rever-
beration environments, it has been shown that SRP-PHAT yields
more accurate and reliable location estimate than SRP.

D. Beamforming

BF is the process of improving the signal reception by prop-
erly combining a source signal received at several spatially sep-
arated microphones. BF not only reduces the background noise
to increase the SNR, it also attenuates any interference coming
from a direction other than that of the intended source signal,
even if the noise and interferences occupy the same frequency
band as the intended signal.
There are many BF techniques available such as LCMV,

MVDR, etc. [20]. Perhaps the simplest one is delay and-
sum [20]. The delay-and-sum beamformer output is constructed
using

ŝ(n) =
1
M

M −1∑

i=0

xi(n + τi(û)) (11)

where û is the estimated source position. Note that τi(û) is
not an integer in general. The correction of delay in xi(n) is
implemented in the frequency domain through the use of FFT
by introducing linear phase shift with slope equal to τi(û).

IV. FALL DETECTION METHODOLOGY

A. Utilizing Height Information

The previous study [18] proposed an approach to increase
the specificity by using the height estimate of the sound source.
The motivation is that given a height threshold, a fall, which
comes from ground, can be separated from a nonfall, which
comes above ground. In the proposed acoustic-FADE, the height
information is directly available from sound source localization
without additional cost. The criterion for determining the height
threshold value is to filter out the above-ground nonfalls asmany
as possible while keeping all the falls. The height threshold was

Fig. 4. Steps of computing MFCCs.

determined manually over a small set of data in the previous
work [18].
To improve the robustness of fall detection in different acous-

tic environments, we propose here an approach to automati-
cally set the height threshold using Otsu’s method [27] that is
originally used for automatic thresholding in image processing.
Otsu’s method determines the threshold to separate two classes
by minimizing their intraclass variances. Since Otsu’s method is
designed for image, we first generate a grayscale image of which
the intensity of each pixel represents the height of a sound signal
in the training dataset. Then Otsu’s method can be applied to
the image and generate the threshold.

B. MFCC Features

Mel-scale frequency cepstral coefficients (MFCCs) are the
most commonly used acoustic features for speech/sound recog-
nition. MFCCs take into consideration human perception sen-
sitivity with respect to frequencies and therefore they are often
considered best for speech/sound recognition. In fall detection,
we use MFCC features to identify the sounds of falls and non-
falls. The computation of MFCCs is commonly performed in
six steps [28], which are shown in the blocks diagram of Fig. 4.
The descriptions of the blocks are as follows.
1) Preemphasis: It is to compensate the HF signal compo-

nent that was attenuated during sound production. It is
implemented by passing the input through a first-order
high-pass filter expressed as follows:

y(n) = x(n) − ηx(n − 1) (12)

and typically η ∈ [0.95, 1]. We set it to 0.96 in this study.
2) Segmentation and Windowing: The input sound sample is

segmented into a number of frames with 32% overlap. The
frame size is set to 256 data points and the data length is
500ms× 20KHz= 104 points. The number of frames in a
sound sample is [(104 − 0.32× 256)/(0.32× 256)]= 121.
Each frame is multiplied by a Hamming window in order
to minimize the boundary effect due to segmentation.

3) FFT: It is used to convert the time-domain points into the
frequency domain to obtain the frequency spectral features
of a sound sample. It is applied to each frame separately.

4) Mapping and Filtering: For each windowed frame, the
mel-scale mapping is performed using the relation [29]

Mel(f) = 1125 ln
(

1 +
f

700

)
(13)

where f denotes the linear frequency ranging from 0 to
10 KHz. A bank of 30 triangular bandpass filters (BPFs) is
assigned over the mel-frequency Mel(f ) in equal interval
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spacings and they are multiplied to the FFT values. The
energy El of the lth BPF output, l = 1, 2, . . . , 30, is
generated.

5) Discrete cosine transform: It is applied toEl to create J =
6 MFCCs for frame i, i.e.,

Cj,i =
L∑

l=1

cos
[
(j + 1)(l − 0.5)π

L

]
El

L = 30, j = 1, . . . , J. (14)

6) Repeat steps 4 and 5 for all 121 frames to obtain theMFCC
matrix C of one sound sample as follows:

C =

⎡

⎢⎣

C1,1 · · · C1,121
...

. . .
...

C6,1 · · · C6,121

⎤

⎥⎦ . (15)

C. NN Classifier

TheNN classifier is a special case of the k-NN classifier when
k is equal to 1. The idea of NN is to assign an unknown test
sample to the class that has a sample closest to it. In our case,
the closeness is measured by Euclidean distance based on the
sample features. TheMFCC features of a sample are represented
by a J × I matrix (J = 6, I = 121 in our case). We use the
Frobenius norm as a measure of the distance between a pair of
J × I feature matrices p and q

distp−q = |p − q|J×I =

√√√√
J∑

j=1

I∑

i=1

(pji − qji)2

j = 1, . . . , J, i = 1, . . . , I. (16)

The null and alternate hypotheses of a test sample for fall de-
tection are

H0 : Nonfall

H1 : Fall.

H1 is chosen if

min(disttest-nonfall)
min(disttest-fall)

> 1 (17)

otherwise H0 is chosen. min(disttest-fall) represents the min-
imum Frobenius norm between a test feature matrix and a
fall-labeled feature matrix. The same definition applies to
min(disttest-nonfall).

V. EXPERIMENTAL DATA AND PERFORMANCE EVALUATION

A. Data Measurements

Wehave obtained approval by the Institutional ReviewBoard,
University of Missouri, for this research project. The experi-
mental data consists of falls and nonfalls performed by three
stunt actors (two females, age: 32 and 46, height: 5′3′′ and 5′4′′,
weight: 135 and 117 lbs; onemale, age: 30, height: 5′8′′, weight:
170 lbs) and please refer to Table I for more details. They have
been trained and instructed by our nurse collaborators to fall

TABLE I
STUNT ACTOR INFORMATION

Fig. 5. (a) Front camera view of the experiment. (b) Side camera view of the
experiment.

Fig. 6. Top view of the configuration for collecting dataset DAT1. The micro-
phone array center is at x–y coordinate of (0m, 4.1m) with a height of 2.46m.
The mattress occupies an area of 2m × 1m.

like an elderly where the training details have been documented
in [30].
The experimental data has two sets—DAT1 and DAT2. DAT1

is a dataset collected in a laboratory room and DAT2 is a dataset
collected in realistic living environments in TigerPlace.1
Both of them are collected using the proposed acoustic-

FADE.
1) Description of DAT1: The size of the laboratory room

is 9m × 8.2m × 3m (L × W × H) and the reverberation
time is RT60 ≈ 0.9 s, which is calculated based on Sabine’s
reverberation equation for room acoustics [31]. Fig. 5 shows
two camera views of a stunt actor who is ready to fall on the
mattress. Fig. 6 shows the relative positions of the microphone
array and the mattress, where the fall sounds come from. Higher
sensitivity and specificity could be expected if the microphone
array is closer to the sound source because of better SNR.
The stunt actors fall on a mattress and generate a fall sound in

each trial. Apart from fall signals, the stunt actors also produce

1TigerPlace is an assisted living facility in Columbia, Missouri, MO. See
website at http://eldertech.missouri.edu/overview.htm
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TABLE II
DESCRIPTION OF DAT1

TABLE III
DESCRIPTION OF DAT2

nonfall sounds from different actions and they can come from
any possible locations in the room. DAT1 contains 120 files
of falls and 120 files of nonfalls. Half of the nonfall sounds
are above ground and the other half are on ground. There are
20 types of falls and 20 types of nonfalls. Table II gives the
description of DAT1.
2) Description of DAT2: DAT2 consists of four subsets that

were collected in four different apartments in TigerPlace. The
four experiments are conducted independently and the descrip-
tions of the experiments including the stunt actors, the acoustic
characteristics (room size and RT60), the type of floor surface,
and the number of falls are shown in Table III.
The stunt actor B is a female of age 46, height 5′4′′, and

weight 117 lbs, and the stunt actor C is a male of age 30, height
5′8′′, and weight 170 lbs, as tabulated in Table I. Each of them
performed six falls for each subset. The mattresses used in these
experiments are all the same and are similar to the one used in
DAT1. The carpet was typical for assisted living homes.

B. Performance Evaluation

The acoustic-FADE performance was assessed through re-
ceiver operating characteristic (ROC) curve, which depicts the
classifier sensitivity versus 1-specificity at different detection
thresholds. Since an ROC curve cannot be obtained by a binary
decision rule like the one of NN, (17) is modified by replacing 1
with a threshold variable r [32] and the decision rule becomes:
H1 (fall) is chosen if

min(disttest-nonfall)
min(disttest-fall)

> r, r ∈ (0, 2) (18)

otherwise, H0 (nonfall) is selected. To quantify the ROC curve
for better comparison, in addition to sensitivity and specificity,
we use area under the ROC curve (AUC) and accuracy as well.
1) Performance Metric Index: Let us define four important

evaluation factors, which are number of true positives (TP),
number of false positives (FP), number of false negatives (FN),
and number of true negatives (TN). Given a certain detection
threshold r, then

Sensitivity|r =
TP

TP+ FN

∣∣∣∣
r

(19)

Specificity|r =
TN

TN+ FP

∣∣∣∣
r

. (20)

AUC is between 0 and 1. The larger the AUC, the better the
classification performance. If the operating point of the ROC
curve is chosen at detection threshold ro , then the accuracy is

Accuracy =
TP+ TN

TP+ FN+ TN+ FP

∣∣∣∣
ro

. (21)

Note that TP + FN is the total number of falls and TN + FP is
the total number of nonfalls.
2) Determination of ROC Operating Threshold: In practice,

we would like to achieve certain sensitivity and specificity from
acoustic-FADE and the operating thresholdmust be determined.
We choose the operating threshold ro by equalizing the total
cost from false positives with that from false negatives when
the penalty of a false positive is considered the same as a false
negative. The operating point is the position on the ROC curve
whose tangent has a slope of (1/ρ) − 1, where ρ is the propor-
tion of falls [33]. For DAT1, we have equal number of falls and
nonfalls, ρ = 0.5, and the slope is 45◦. Once the operating point
is found, the corresponding classifier threshold ro is fixed.

C. Performance Evaluation Using DAT1 and DAT2

To evaluate the performance of acoustic-FADE using DAT1
(see Table II), we use 10-fold cross validation. The 120 falls and
120 nonfalls are decomposed into 10 folds. Each fold has 12
falls and 12 nonfalls with even distribution of fall and nonfall
types. Given a detection threshold r, one fold is used as testing
dataset and the others as training dataset at each validation. Then
the sensitivity and specificity are obtained for each validation.
Taking the average of sensitivity and specificity over the 10
validations gives Sensitivity|r and Specificity|r .
To examine the performance using DAT2 (see Table III), we

use the following method. For each subset in DAT2, it is used
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to replace the falls in the testing fold in DAT1 at each validation
without performing retraining. Hence, we are testing each subset
of DAT2 over the 10 trained classifiers from DAT1.
The algorithm to perform fall detection in the testing folds of

DAT1 and DAT2 follows the block diagram in Fig. 3.

VI. EXPERIMENTAL RESULTS

The primary interest of the experiment is to validate the the-
ory that localization and BF are able to improve fall detection
by suppressing the background noise and interferences. In addi-
tion, we want to confirm that the specificity can be increased by
utilizing the estimated height of the sound source. Finally, we
would like to investigate the impact on the fall detection perfor-
mance when the acoustic environments and the floor materials
have changed.

A. Performance Evaluation Using DAT1

The fall detection performance was evaluated under two
cases. The first is with background noise only; the second is
with background noise and TV interference. For both cases, we
evaluated the performance of the proposed acoustic-FADE that
consists of a circular microphone array with localization, BF
and estimated source height (BFH) for fall detection. To exam-
ine better effect of using BF and height information, we also
produce the results of using BF only and using a single mi-
crophone without BF and source height (SGL) for comparison
purpose.
1) Case I: PerformanceUnder BackgroundNoiseOnly: The

signal is modeled as follows:

x(n) = s(n) + αΦ(n). (22)

x(n) is the M × 1 received signal vector from the M = 8
microphones at time n, s(n) is the original received signal, and
the component Φ(n) is white Gaussian noise of unity power.
The noise level is adjusted by changing the scalar α(α ≥ 0).
The original signal s(n) is from the experimental configuration
shown in Fig. 6.
We choose four noise levels of α = {0, 0.1, 0.2, 0.4}, where

α = 0 is referred to “clean” since no white noise is added.
The other three noise levels correspond to three SNR2 values
of 10, 4, −2 dB. The 10-fold cross-validation ROC curves for
the three processing cases (BFH, BF, SGL) at “clean” level are
shown in Fig. 7. The AUC and the sensitivity, specificity, and
accuracy computed using (19)–(21) at the operating threshold
ro for each processing case under the SNR levels are listed in
Table IV. The threshold is found by using the method described
in Section V-B2.
Fig. 7 shows that the BF reduces the 1-specificity by about

30% at 100% sensitivity, compared to using a singlemicrophone
(SGL). The use of estimated source height (BFH) reduces the
1-specificity further by about 70% at 100% sensitivity. Overall,

2The SNR level is obtained by averaging the SNRs over all the fall and
nonfall files in DAT1. The SNR of one file is calculated by SNR = Ps /α2

where Ps = (1/MN )
∑M −1

m =0

∑N −1
m =0 s2

m (n), which is the average power of
the received signal s(n) over M microphones. N is the duration of one file in
samples.

Fig. 7. Comparison of 10-fold cross-validation ROC curves in case I on DAT1
at “clean” condition.

TABLE IV
TEN-FOLD CROSS-VALIDATION RESULTS OF CASE I ON DAT1 AT DIFFERENT
SNR LEVELS (SENSITIVITY, SPECIFICITY, AND ACCURACY VALUES ARE IN %

AT THE OPERATING THRESHOLDS)

as shown in Table V for the “clean” condition, at the operat-
ing threshold ro , the proposed acoustic-FADE achieves 100%
sensitivity at 97% specificity, and the corresponding accuracy is
98%.
2) Case II (Performance With Background White Noise and

TV Interference): The signal model is

x(n) = s(n) + y(n) + αΦ(n). (23)

The terms x(n), s(n), and Φ(n) are defined as in case I and
y(n) denotes the TV interference. The TV interference is cre-
ated by putting a TV sound source near the mattress with height
of 0m (we set the height as zero to challenge the acoustic-FADE
because the effect of interference will not be reduced by using
the estimated source height) in the room. The experimental con-
figuration for this case is also given in Fig. 6, where the TV
sound source is located at x–y coordinate of (7.5m, 3.5m). The
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TABLE V
TEN-FOLD CROSS-VALIDATION RESULTS OF CASE II ON DAT1 AT DIFFERENT
SNR LEVELS (SENSITIVITY, SPECIFICITY, AND ACCURACY VALUES ARE IN %

AT THE OPERATING THRESHOLDS)

Fig. 8. Comparison of 10-fold cross-validationROC curves in case II onDAT1
at “clean” condition.

level of the TV audio signal is constant. We set the signal-to-
interference ratio3 (SIR) of the falls and nonfalls in DAT1 to be
6 dB. Similar to case I, we show the 10-fold cross-validation
ROC curves for the three processing cases at “clean” condition
in Fig. 8. The AUC and the sensitivity, specificity, and accuracy
at the operating threshold ro for each processing case under the
SNR levels are listed in Table V. For example, the ROC curves
in Fig. 8 show similar patterns to those in Fig. 7 except that the
presence of the interference generally degrades the performance
of the proposed acoustic-FADE for each processing case. How-
ever, at the operating threshold, acoustic-FADE can still reach
to 93% sensitivity at 98% specificity, with the corresponding
accuracy equal to 95%.

3The SIR is calculated in the similar way as calculating SNR except that α2

is replaced by Py , which is the average power of the interference signal y(n).

Fig. 9. Comparison of ROC curves using the proposed acoustic-FADE (BFH)
among the four subsets of DAT2 at “clean” condition. The top-left-corner region
is enlarged.

TABLE VI
VALIDATION RESULTS USING THE PROPOSED ACOUSTIC-FADE (BFH) ON
DAT2 AT “CLEAN” CONDITION (SENSITIVITY, SPECIFICITY, AND ACCURACY

VALUES ARE IN % AT THE OPERATING THRESHOLDS)

B. Performance Evaluation Using DAT2

The ROC curves shown in Fig. 9 are generated using the pro-
posed acoustic-FADE by the method described in Section V-C)
for the four subsets at “clean” condition. Table VI gives the
AUC and sensitivity, specificity, and accuracy at the detection
threshold ro that is determined from the dataset DAT1.

VII. DISCUSSION

By comparing BFH and BF with SGL in Fig. 7 and Table IV
for case I, we observe that the fall detection performance using
BF is always better than that of using a single microphone
at all four SNR levels. Fig. 7 shows at “clean” condition that
the 1-specificity is greatly reduced by about 70% using BFH
compared to SGL when the sensitivity is at 100%.
Compared to linear arrays [18], circular arrays provide much

better height estimation accuracy. The estimated height informa-
tion of the source from localization is found to be very useful for
improving the performance and it increases the specificity con-
siderably. Although the detection performance becomes worse
when the noise level increases, the improvement of using the
proposed acoustic-FADE is more significant. These experimen-
tal results confirm our expectation that BF is able to enhance the
signal and improve fall detection performance, and the height
information helps to increase the specificity.



LI et al.: MICROPHONE ARRAY SYSTEM FOR AUTOMATIC FALL DETECTION 1299

The results in Fig. 8 and Table V for case II are consistent with
those for case I. At the same SNR level, the performance for
case II is worse than that in case I because of the presence of TV
interference. However, the improvement of using the proposed
FADE remains very significant due to its ability to suppress
the interference and enhance the signal before detection. Fig. 8
shows that at “clean” condition, at the operating threshold, the
1-specificity is greatly reduced by about 90% using BFH com-
pared to SGL when the sensitivity is at 93%. Comparing the
results in case I at the same sensitivity, the proposed acoustic-
FADE providesmore reduction in 1-specificity when directional
interference is present in the environment. This is expected to
be so because BF is known to have the advantage of reducing
interference in addition to improving the SNR.
The results in Fig. 9 and Table VI show that the proposed

acoustic-FADE performances on the four subsets in DAT2 are
very similar except for subset 3, which has a little worse result
than the others. This is possibly because subset 3 has carpet as
the floor material and/or has different reverberation time. An-
other possibility is that the training uses DAT1 only. However,
the performance reduction is not significant and it occurs at
over 90% sensitivity, as shown in Fig. 9. Nevertheless, the re-
sults (AUC and accuracy) from DAT2 in Table VI are very close
to those of BFH at “clean” condition from DAT1 in Table IV,
indicating that the acoustic-FADE performance is not sensi-
tive to room environments, and the difference in floor materials
from mattress to carpet only results in marginal degradation in
performance, although the classifiers were trained on mattress
falls.
To gain some insight about the difference of MFCC features

between fall sounds and nonfall sounds, we display the patterns
of the MFCC features of DAT1 (see Table II). For the MFCC
matrix [see (15)], we concatenate the six rows to form a col-
umn vector of length 6 × 121 = 726. The vector is normalized
to have unity norm for display purpose. Repeating this proce-
dure for all 240 files forms a feature matrix of size 726 × 240.
Fig. 10 shows the grayscale image of the features, where file
indices 1 to 120 correspond to fall files, indices 121 to 180 cor-
respond to on-ground nonfalls, and 181 to 240 for above-ground
nonfalls.
Fig. 10 indicates that there is strong consistency for the fea-

tures from falls. In addition, the fall features distinguish most
from those of nonfalls in the first and last MFCC features. It
is interesting that the above-ground nonfalls have large feature
values in the second MFCC.
As described in the Section I, we have advanced the pre-

vious work [19] by employing and integrating sound source
localization, estimated source height, and BF for fall detection.
The work in [19] only achieves 87% sensitivity at a specificity
of nearly 90%. Under the same acoustic conditions (data are
collected in the same environment at “clean” condition with-
out interferences) as those in [19], the results of the proposed
acoustic-FADE in this paper greatly increase the specificity to
97% with the sensitivity reaching 100%. In addition, the re-
sults of this paper show a significant improvement as compared
to those in [16]–[18], which use a single microphone for fall
detection.

Fig. 10. Grayscale representation of theMFCC features of falls (1–120th files)
and nonfalls (121–240th files) in Table II separated by a red solid line. For the
nonfalls, the 121–180th files are on-ground nonfalls and the 181–240th files are
above-ground nonfalls, and they are separated by a red dash line. The darker is
the intensity and the lower is the coefficient value.

We would like to clarify that the current study in this paper
is limited. First, the fall detection performance presented here
has small sample size and uses simulated fall acoustic signals
from stunt actors. Although the stunt actors have been well
trained to fall like elderly people, there may still be some slight
discrepancy with the actual falls from elderly. In order to in-
crease the sample size and collect more realistic fall signals, we
have deployed the proposed acoustic-FADE in the TigerPlace
apartments of elderly to capture the falls. Additional study of
the proposed approach and its performance will be conducted
as our fall signal database becomes richer. Second, the false
alarms are from simulated events. It is necessary to evaluate the
proposed algorithm during actual daily living activities rather
than simulated scenarios since they may not cover all potential
sources of interference encountered during normal activities of
elderly. The data we are currently collecting from the acoustic-
FADE at the apartments of elderly will enable us to conduct this
investigation.

VIII. CONCLUSION

In this paper, we propose an acoustic-FADE and evaluate its
performance. Acoustic-FADE uses a hardware that consists of
a uniform circular microphone array that has eight omnidirec-
tional microphones distributed along a circle of radius 25 cm.
The processing of localization, height information, and BF are
applied to locate the sound source, increase the specificity, and
enhance the received signal. Feature extraction and classification
are then performed for fall detection. Preliminary experimental
results using the actual fall and nonfall data validate the promis-
ing performance of acoustic-FADE. In addition, the validation
results from the external experiments confirm that the proposed
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acoustic-FADE is not sensitive to the changing acoustic envi-
ronments and floor materials.
Future work will focus on improving the localization and

BF technique under more challenging situations such as mul-
tiple interferences and significant amount of reverberation. An
improved classifier, which accounts for the temporal dynamic
nature of the fall acoustic signal such as hidden Markov model,
will also be investigated. Also, actual falls from elderly and
larger dataset will be collected and analyzed to further evaluate
and improve the performance of acoustic-FADE.
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